Advertisement

Abstract

Having criticized the analogies between mathematical proofs and narrative fiction in 2000 and between mathematics and playing abstract games in 2008, I want to put forward an analogy of my own for criticism. It is between how the mathematical community accepts a new result put forward by a mathematician and the proceedings of a law court trying a civil suit leading to a verdict. Because it is only an analogy, I do not attempt to draw any philosophical conclusions from it.

Keywords

Mathematical Proof Mathematical Community Musical Score Civil Suit Royal Ontario Museum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adler, J. (2014). Epistemological problems of testimony. In E.N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring 2014 edition). http://plato.stanford.edu/archives/spr2014/entries/testimony-episprob.
  2. Arana, A. (2015). On the depth of Szemerédi’s theorem. Philosophia Mathematica, 22(3). doi:10.1093/philmat/nku036.Google Scholar
  3. Coady, C. A. J. (1992). Testimony. Oxford: Clarendon.Google Scholar
  4. Floridi, L. (2014). Perception and testimony as data providers. Logique et Analyse, 57, 151–179.Google Scholar
  5. Geist, C., Löwe, B., & Van Kerkhove, B. (2010). Peer review and knowledge by testimony in mathematics. In B. Löwe & T. Müller (Eds.), PhiMSAMP: Philosophy of mathematics: Sociological aspects and mathematical practice (pp. 155–178). Texts in philosophy (Vol. 11). London: College Publications.Google Scholar
  6. Green, C. R. (2015). Epistemology of testimony. In J. Fieser & B. Dowden (Eds.), Internet encyclopedia of philosophy, 306–308. http://www.iep.utm.edu/ep-testi.
  7. Hersh, R. (2014). Experiencing mathematics: What do we do when we do mathematics? Providence, RI: American Mathematical Society.Google Scholar
  8. McAllister, J. (2005). Mathematical beauty and the evolution of the standards of mathematical proof. In M. Emmer (Ed.), The visual mind II. Cambridge, MA: MIT Press.Google Scholar
  9. Montaño, U. (2012). Ugly mathematics: Why do mathematicians dislike computer-assisted proofs? The Mathematical Intelligencer, 34(4), 21–28.zbMATHMathSciNetCrossRefGoogle Scholar
  10. Pollard, S. (2014). Review of “Hersh, R. (2014). Experiencing mathematics: What do we do when we do mathematics? Providence, RI: American Mathematical Society”. Philosophia Mathematica (3), 22, 271–274.Google Scholar
  11. Reid, T. (1764). D. R. Brookes (Ed.), An inquiry into the human mind on the principles of common sense. University Park: Pennsylvania State University Press (1997).Google Scholar
  12. Ricoeur, P. (1972). The hermeneutics of testimony. (D. Stewart & C.E. Reagan, Trans.) Anglican Theological Review, 61 (1979). Reprinted in Ricoeur, P. (1980). In L. S. Mudge (Ed.), Essays on biblical interpretation (pp. 119–154). Philadelphia: Fortress Press.Google Scholar
  13. Ricoeur, P. (1983). Can fictional narratives be true? Analecta Husserliana, XIV, 3–19.Google Scholar
  14. Rota, G.-C. (1997). The phenomenology of mathematical beauty. Synthese, 111, 171–182.zbMATHMathSciNetCrossRefGoogle Scholar
  15. Russell, B. (1927). Analysis of matter. London: Kegan Paul, Trench, Trübner.zbMATHGoogle Scholar
  16. Searle, J. R. (1979). Expression and meaning. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  17. Searle, J. R., & Vanderveken, D. (1985). Foundations of illocutionary logic. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  18. Spivak, M. (1970–1979). A comprehensive introduction to differential geometry (5 Vols.). Berkeley: Publish or perish.Google Scholar
  19. Szemerédi, E. (1975). On sets of integers containing no k elements in arithmetic progression. Acta Arithmetica, 27, 199–245.zbMATHMathSciNetGoogle Scholar
  20. Thomas, R. S. D. (2000). Mathematics and fiction: A comparison. Delivered at the Twenty-Sixth Annual Meeting of the Canadian Society for the History and Philosophy of Mathematics, McMaster University, June 12, 2000, and printed in proceedings (pp. 206–210).Google Scholar
  21. Thomas, R. S. D. (2002). Mathematics and narrative. The Mathematical Intelligencer, 24(3), 43–46.MathSciNetCrossRefGoogle Scholar
  22. Thomas, R. S. D. (2008). A game analogy for mathematics. Delivered at the Thirty-Fourth Annual Meeting of the Canadian Society for History and Philosophy of Mathematics, University of British Columbia, June 2, 2008, and printed in proceedings (pp. 182–186).Google Scholar
  23. Thomas, R. S. D. (2009). Mathematics is not a game but…. The Mathematical Intelligencer, 31(1), 4–8.zbMATHMathSciNetCrossRefGoogle Scholar
  24. Thomas, R. S. D. (2012). Review of three books including “Löwe, B., & Müller, T. (Eds.) (2010). PhiMSAMP: Philosophy of mathematics: Sociological aspects and mathematical practice. Texts in Philosophy (Vol. 11). London: College Publications”. Philosophia Mathematica, (3), 20, 258–260.Google Scholar
  25. Thomas, R. S. D. (2014). Reflections on the objectivity of mathematics. In E. Ippoliti & C. Cozzo (Eds.), From a heuristic point of view. Essays in honour of Carlo Cellucci (pp. 241–256). Newcastle upon Tyne: Cambridge Scholars Publishing.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.St John’s College and Department of MathematicsUniversity of ManitobaWinnipegCanada

Personalised recommendations