Abstract
These notes represent an expanded version of a lecture delivered at the Urbana meeting of June 2014 in memory of Paul and Felice Bateman and of Heini Halberstam, and, in modified form, at the October 2014 workshop at the Royal Swedish Academy of Sciences, Stockholm, on the occasion of the presentation to Yitang Zhang of the 2014 Rolf Schock Prize in Mathematics for his ground-breaking work on bounded gaps between primes.
Keywords
- Asymptotic Formula
- Arithmetic Progression
- Residue Class
- Implied Constant
- Sieve Method
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
To Helmut Maier on the occasion of his 60th birthday
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
This co-primality restriction is assumed throughout, though not always explicitly mentioned.
References
M.B. Barban, The “density” of the zeros of Dirichlet L-series and the problem of the sum of primes and “near primes”. Mat. Sb. (N.S.) 61, 418–425 (1963)
E. Bombieri, On the large sieve. Mathematika 12, 201–225 (1965)
E. Bombieri, J.B. Friedlander, H. Iwaniec, Primes in arithmetic progressions to large moduli. Acta Math. 156, 203–251 (1986)
E. Bombieri, J. B. Friedlander and H. Iwaniec, Primes in arithmetic progressions to large moduli III. J. Amer. Math. Soc. 2, 215–224 (1989)
V. Brun, Über das goldbachsche Gesetz und die Anzahl der Primzahlpaare. Arch. Math. Naturvid. B34(8), 1–19 (1915)
A.A. Buchstab, New results in the investigation of the Goldbach-Euler problem and the problem of prime pairs. Dokl. Akad. Nauk SSSR 162, 735–738 (1965). (Soviet Math. Dokl. 6, 729–732 (1965))
J.R. Chen, On the representation of a larger even integer as the sum of a prime and the product of at most two primes. Sci. Sinica 16, 157–176 (1973)
G.L. Dirichlet, Beweiss des Satzes das jede arithmetische Progression deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält, Werke pp. 313–342, Kön. Preuss. Akad. der Wissen., Berlin, 1889. Reprinted Chelsea, New York, 1969
P.D.T.A. Elliott, H. Halberstam, A conjecture in prime number theory, in Symposia Mathematica, vol. IV (INDAM, Rome, 1968/69) (Academic Press, London, 1970), pp. 59–72
D. Fiorilli, Residue classes containing an unexpected number of primes. Duke Math. J. 161, 2923–2943 (2012)
D. Fiorilli, The influence of the first term of an arithmetic progression. Proc. Lond. Math. Soc. 106, 819–858 (2013)
E. Fouvry, Sur le problème des diviseurs de Titchmarsh. J. Reine Angew. Math. 357, 51–76 (1985)
E. Fouvry, H. Iwaniec, Primes in arithmetic progressions. Acta Arith. 42, 197–218 (1983)
J.B. Friedlander, A. Granville, Limitations to the equi-distribution of primes I. Ann. Math. (2) 129, 363–382 (1989)
J.B. Friedlander, A. Granville, Limitations to the equi-distribution of primes III. Compos. Math. 81, 19–32 (1992)
J.B. Friedlander, A. Granville, Relevance of the residue class to the abundance of primes, in Proceedings of the Amalfi Conference (Maiori, 1989) (Università di Salerno, Salerno, 1992), pp. 95–103
J.B. Friedlander, A. Granville, A. Hildebrand, H. Maier, Oscillation theorems for primes in arithmetic progressions and for sifting functions. J. Amer. Math. Soc. 4, 25–86 (1991)
J.B. Friedlander, H. Iwaniec, Opera de cribro, in American Mathematical Society Colloquium Publications, vol. 57 (American Mathematical Society, Providence, RI, 2010)
D.A. Goldston, J. Pintz, C.Y. Yildirim, Primes in tuples I. Ann. Math. 170(2), 819–862 (2009)
H. Iwaniec, A new form of the error term in the linear sieve. Acta Arith. 37, 307–320 (1980)
Yu.V. Linnik, The Dispersion Method in Binary Additive Problems (American Mathematical Society, Providence, RI, 1963)
H. Maier, Primes in short intervals. Michigan Math. J. 32, 221–225 (1985)
J. Maynard, Small gaps between primes. Ann. Math. 181(2), 383–413 (2015)
H. Montgomery, in Topics in Multiplicative Number Theory. Lecture Notes in Mathematics, vol. 227 (Springer, Berlin/New York, 1971)
H. Montgomery, Problems concerning prime numbers. in Mathematical Developments Arising from the Hilbert Problems, Northern Illinois University, De Kalb Illinois, 1974. Proceedings of Symposia in Pure Mathematics, vol. XXVIII, pp. 307–310 (American Mathematical Society, Providence, RI, 1976)
D.H.J. Polymath, Variants of the Selberg sieve, and bounded intervals containing many primes. Res. Math. Sci. (2014) (to appear)
A. Renyi, On the representation of an even number as the sum of a single prime and single almost-prime number. Izvestiya Akad. Nauk SSSR. Ser. Mat. 12 (1948) 57–78. (Amer. Math. Soc. Transl. 19(2), 299–321 (1962)
P.L. Tchebyshev, Sur la function qui détermine la totalité des nombres prémiers inferieurs à une limite donnée. J. Math. Pures et Appl. 17, 366–390 (1852)
I.M. Vinogradov, Selected Works (Springer, Berlin, 1985)
A. Walfisz, Zur additiven Zahlentheorie II. Math. Zeit. 40, 592–607 (1936)
Y. Zhang, Bounded gaps between primes. Ann. Math. (2) 179, 1121–1174 (2014)
Acknowledgements
The author’s research is partially supported by a University Professor Grant from the University of Toronto and by the Natural Sciences and Engineering Research Council of Canada through Research Grant A5123.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Friedlander, J.B. (2015). Counting Primes in Arithmetic Progressions. In: Pomerance, C., Rassias, M. (eds) Analytic Number Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-22240-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-22240-0_7
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-22239-4
Online ISBN: 978-3-319-22240-0
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)