Fredholm Determinants and the Camassa-Holm Hierarchy

Part of the Contemporary Mathematicians book series (CM)


The equation of Camassa and Holm [2]2 is an approximate description of long waves in shallow water.


Camassa Holm Hierarchy Soliton Train Isospectral Class Theta Functions Complex Projective Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    R. Beals, D. H. Sattinger, and J. Szmigielski. Multipeakons and the classical moment problem. Adv. Math., 154:229–257, 2000.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    R. Camassa and D. Holm. An integrable shallow water equation with peaked solitons. Phys. Rev. Lett., 71(11):1661–1664, 1993.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    R. Camassa, D. D. Holm, and M. Hyman. A new integrable shallow water equation. Adv. Appl. Math., 31:1–33, 1993.Google Scholar
  4. [4]
    A. Constantin and J. Escher. Well-posedness, global existence, and blow up phenomena for a periodic quasi-linear hyperbolic equation. Comm. Pure Appl. Math., 51:475–504, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    A. Degasperis, D. D. Holm, and A. N. N. Hone. A new integrable equation with peakon solutions. Theoretical and Mathematical Physics, 133:1463–1474, 2002.MathSciNetCrossRefGoogle Scholar
  6. [6]
    F. J. Dyson. Fredholm determinants and inverse scattering. Comm. Math. Phys., 47:171–183, 1976.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    N. Ercolani and H. P. McKean. Geometry of KdV (4). Abel sums, Jacobi variety, and theta function in the scattering case. Invent. Math., 99(3):483–544, 1990.Google Scholar
  8. [8]
    D. Holm and M. F. Staley. Wave structure and nonlinear balances in a family of evolutionary PDEs. SIAM J. Appl. Dyn. Syst., 2:323–380, 2003.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    A. R. Its and V. B. Matveev. Hill operators with a finite number of lacunae. Funkcional. Anal. i Priložen., 9(1):69–70, 1975.MathSciNetCrossRefGoogle Scholar
  10. [10]
    H. P. McKean. Geometry of KdV (1): addition and the unimodal spectral class. Rev. Math. Iberoamer., 2:235–261, 1986.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    H. P. McKean. Breakdown of a shallow water equation. Asian J. Math., 2:867–874, 1998.MathSciNetzbMATHGoogle Scholar
  12. [12]
    H. P. McKean. Addition for the acoustic equation. Comm. Pure Appl. Math., 54:1271–1288, 2001.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    H. P. McKean and E. Trubowitz. The spectral class of the quantum-mechanical harmonic oscillator. Comm. Math. Phys., 82(4):471–495, 1981/82.Google Scholar
  14. [14]
    T. J. Stieltjes. Recherches sur les fractions continues, Oeuvres complétes 2. Nordhoff, Gröningen, 1918.Google Scholar
  15. [15]
    Z. Xin and P. Zhang. On the weak solutions to a shallow water equation. Comm. Pure Appl. Math., 53(11):1411–1433, 2000.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Courant InstituteNew YorkUSA

Personalised recommendations