# Curvature and the Eigenvalues of the Laplacian

Chapter
Part of the Contemporary Mathematicians book series (CM)

## Abstract

A famous formula of H. Weyl [17] states that if D is a bounded region of R d with a piecewise smooth boundary B, and if 0 > γ1 ≥ γ2 ≥ γ3 ≥ etc. is the spectrum of the problem
$$\displaystyle\begin{array}{rcl} \varDelta f =\big (\partial ^{2}/\partial x_{ 1}^{2} + \cdots + \partial ^{2}/\partial x_{ d}^{2}\big)f =\gamma f\quad \mbox{ in }D,& &{}\end{array}$$
(6.1.1a)
$$\displaystyle\begin{array}{rcl} f \in C^{2}(D) \cap C(\overline{D}),& &{}\end{array}$$
(6.1.1b)
$$\displaystyle\begin{array}{rcl} f = 0\quad \mbox{ on }B,& &{}\end{array}$$
(6.1.1c)
then
$$\displaystyle\begin{array}{rcl} -\gamma _{n} \sim C(d)(n/\mbox{ vol }D)^{2/d}\quad (n \uparrow \infty ),& &{}\end{array}$$
(6.1.2)
or, what is the same,
$$\displaystyle\begin{array}{rcl} Z \equiv \mathop{\mathrm{sp}}\nolimits e^{t\varDelta } =\sum _{ n\geq 1}\exp \big(\gamma _{n}t\big) \sim (4\pi t)^{-d/2} \times \mathop{\mathrm{vol}}\nolimits D\quad (t \downarrow 0),& &{}\end{array}$$
(6.1.3)
where $$C(d) = 2\pi [(d/2)!]^{d/2}$$.

## Keywords

Fundamental Form Elementary Solution Curvature Tensor Riemannian Geometry Closed Manifold
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Bibliography

1. [1]
M. Berger. Sur le spectre d’une variètè riemanniene. C. R. Acad. Sci. Paris Sèr. A-B, 263:A13–A16, 1966.Google Scholar
2. [2]
G. Borg. Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe Bestimmung der Differentialgleihung durch die Eigenwerte. Acta Math., 78:1–96, 1946.
3. [3]
È Cartan. Leçons sur la Gèomètrie des Espaces de Riemann. Gauthier-Villars, 1928.
4. [4]
S. S. Chern. A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds. Ann. of Math., 2:747–752, 1944.
5. [5]
G. de Rham. Variètès Diffèrentiables. Hermann, Paris, 1960.
6. [6]
M. Kac. Can you hear the shape of a drum? Amer. Math. Monthly, 73:1–23, 1966.
7. [7]
H. P. McKean. Kramers-Wannier duality for the 2-dimensional Ising model as an instance of Poisson’s summation formula. J. Math. Phys., 5:775–776, 1964.
8. [8]
J. Milnor. Eigenvalues of the Laplace operator on certain manifolds. Proc. Nat. Acad. Sci., 51:542, 1964.
9. [9]
S. Minakshisundaram. A generalization of the Epstein zeta function. Canadian J. Math., 1:320–327, 1949.
10. [10]
S. Minakshisundaram. Eigenfunctions on Riemannian manifolds. J. Indian Math. Soc. (N. S.), 17:159–163, 1953.Google Scholar
11. [11]
S. Minakshisundaram and A. Pleijel. Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds. Canadian J. Math., 1:242–256, 1949.
12. [12]
E. Nelson. The adjoint Markoff process. Duke Math. J., 25:671–690, 1958.
13. [13]
A. Pleijel. A study of certain Green’s functions with applications in the theory of vibrating membranes. Ark. Mat., 2:553–569, 1954.
14. [14]
R. Seeley. The power A s of an elliptic operator A. The University of Michigan, 1966.Google Scholar
15. [15]
S. R. S. Varadhan. Diffusion processes in small time intervals. Comm. Pure Appl. Math., 20:659–685, 1967.
16. [16]
R. Weitzenböck. Invariantentheorie. P. Noordhoff, Groningen, 1923.Google Scholar
17. [17]
H. Weyl. Das asymptotische Verteilungsgesetz der Eigenschwingungen eines beliebig gestalteten elastischen Körpers. Rend. Circ. Mat. Palermo, 39:1–50, 1915.
18. [18]
H. Weyl. The Classical Groups. Princeton University Press, New Jersey, 1946.