Skip to main content

Brownian Motions on a Half Line

  • Chapter
Henry P. McKean Jr. Selecta

Part of the book series: Contemporary Mathematicians ((CM))

  • 880 Accesses

Abstract

‘Numbering (in italics). (1) means formula 1 in the present section; (2.1) means formula (1) of Section 15.2, etc.’

Fulbright grantee 1957–1958 during which time the major part of this material was obtained; the support of the Office of Naval Research, U.S. Govt. during the summer of 1961 is gratefully acknowledged also.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    B(R n) is the usual topological Borel field of the n-dimensional euclidean space R n.

  2. 2.

    C d(R 1) is the space of bounded continuous functions \(f: R^{1} \rightarrow R^{1}\) with d bounded continuous derivatives.

  3. 3.

    \(C^{2}[0, +\infty )\) is the space of functions \(u \in C[0, +\infty )\) with \(D^{2}u \in C(0, +\infty )\) and \((D^{2}u)(0) \equiv (D^{2}u)(0+)\) existing. \(u^{+}(0) =\lim _{\varepsilon \downarrow 0}\varepsilon ^{-1}[u(\varepsilon ) - u(0)]\).

  4. 4.

    \(a \wedge b\) is the smaller of a and b. \(\int _{0+}\) means \(\int _{0<l<+\infty }\).

  5. 5.

    \(\mathfrak{p}\mathfrak{p}^{-1}\mathfrak{t}^{+}\) means \(\mathfrak{p}(\mathfrak{p}^{-1}(\mathfrak{t}^{+}))\).

  6. 6.

    \(\mathbf{B}[\mathfrak{q}(t): a \leqq t < b]\) means the smallest Borel subfield of \(\mathbf{B}\) measuring the motion indicated inside the brackets.

  7. 7.

    \((\mathfrak{m} < t)\) is short for \((w: \mathfrak{m} < t)\).

  8. 8.

    \(\infty \) is an extra state \(\not\in R^{1}\).

  9. 9.

    \(\mathfrak{m}_{0+}^{\bullet }\) is identical in law to the standard Brownian passage time \(\mathfrak{m}_{0} =\min (t: \mathfrak{x}(t) = 0)\), and hence \(E_{l}^{\bullet }(\exp (-\alpha \mathfrak{m}_{0+}^{\bullet })) =\exp (-(2\alpha )^{1/2}l)\) (see (6)).

  10. 10.

    \(\mathfrak{G} = D^{2}/2\).

  11. 11.

    \((\alpha -\mathfrak{G}^{\bullet })G_{\alpha }^{\bullet } = 1\).

  12. 12.

    \(\int _{0}f(l \wedge 1)D^{-1}p_{\varepsilon }(dl)\) converges as \(\varepsilon \downarrow 0\) to \(\int fp_{{\ast}}(dl)\) extended over \([0, +\infty ]\) for each \(f \in C[0, +\infty ]\).

  13. 13.

    \(P_{\infty }[\mathfrak{x}^{\bullet } \equiv \infty ] = 1\) as usual.

  14. 14.

    \(\mathfrak{f}^{-1}\) is the inverse function of \(\mathfrak{f}\).

  15. 15.

    \(\mathfrak{t}^{+}(dt) = 0\) off \(\mathfrak{Z}^{+} = (t: \mathfrak{x}^{+}(t) = 0)\).

  16. 16.

    17

  17. 17.

    18

  18. 18.

    19

  19. 19.

    See also K. Itô [8].

  20. 20.

    \(\mathfrak{p}\mathfrak{p}^{-1}\mathfrak{t}^{+}(t)\) is short for \(\mathfrak{p}(\mathfrak{p}^{-1}(\mathfrak{t}^{+}(t)))\).

  21. 21.

    \(a \vee b\) is the larger of a and b.

  22. 22.

    \(\partial \mathfrak{Q}^{+}\) denotes the boundary of \(\mathfrak{Q}^{+}\).

  23. 23.

    \(\#(l_{n}: \text{etc.})\) denotes the number of jumps l n with the properties described inside.

  24. 24.

    \(\mathfrak{x}^{\bullet } = \mathfrak{x}^{+}\) and \(\mathfrak{t}^{\bullet } = 0\) up to time \(\mathfrak{m}_{0} =\min (t: \mathfrak{x}^{+} = 0)\), and \(\mathfrak{x}^{\bullet }\) starts afresh at that moment.

  25. 25.

    p 3∕(p 1 +α p 3) = 0 if p 3 = 0.

  26. 26.

    G α + is the reflecting Brownian Green operator.

  27. 27.

    \(u^{-}(+1) =\lim _{\varepsilon \downarrow 0}\varepsilon ^{-1}[u(1) - u(1-\varepsilon )]\).

  28. 28.

    P. , E. , \(\mathfrak{x}\), \(\mathfrak{m}\) are the standard Brownian probabilities, expectations, sample paths, and passage times.

  29. 29.

    \(C^{\bullet 2}(R^{1}) = C^{2}(-\infty, 0] \cap C^{2}[0, +\infty ) \cap (u: u''(0-) = u''(0+))\).

  30. 30.

    \(\vert \mathfrak{Z}\vert = 0\).

  31. 31.

    \(\vert [0, +\infty ) - \mathfrak{Q}^{+}\vert = 0\) because \(\mathfrak{p}(t)\) has no linear part p 2 t.

  32. 32.

    Z 1 is the integers.

  33. 33.

    \(C^{\bullet 2}(S^{1}) = C(S^{1}) \cap C^{2}(S^{1} - 0) \cap (u: u''(0-) = u''(0+))\).

  34. 34.

    See J. L. Doob [1].

References

  1. J. L. Doob. Stochastic processes. John Wiley & Sons Inc., New York, 1953.

    MATH  Google Scholar 

  2. E. B. Dynkin. Infinitessimal operators of Markov processes (Russian). Teor. Veroyatnost. i Primenen, 1:38–60, 1956.

    MathSciNet  MATH  Google Scholar 

  3. W. Feller. The parabolic differential equations and the associated semi-groups of transformations. Ann. of Math., 55:468–519, 1952.

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Feller. Diffusion processes in one dimension. Trans. Amer. Math. Soc., 77:1–31, 1954.

    Article  MathSciNet  MATH  Google Scholar 

  5. W. Feller. Generalized second order differential operators and their lateral conditions. Illinois J. Math., 1:459–564, 1957.

    MathSciNet  MATH  Google Scholar 

  6. W. Feller. The birth and death processes as diffusion processes. J. Math. Pures Appl., 38:301–345, 1959.

    MathSciNet  MATH  Google Scholar 

  7. G. Hunt. Some theorems concerning Brownian motion. Trans. AMS, 81:294–319, 1956.

    Article  MATH  Google Scholar 

  8. K. Itô. On stochastic processes. I. (Infinitely divisible laws of probability). Jap. J. Math., 18:261–301, 1942.

    Google Scholar 

  9. K. Itô and H. P. McKean. Diffusion Processes and Their Sample Paths. Academic Press, 1965.

    Book  MATH  Google Scholar 

  10. M. Kac. On some connections between probability theory and differential and integral equations. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, pages 189–215. University of California Press, 1951.

    Google Scholar 

  11. P. Lévy. Sur les intègrales dont les èlèments sont des variables alèatoires indèpendantes. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2), 3(3–4):337–366, 1934.

    MathSciNet  Google Scholar 

  12. P. Lévy. Sur certains processus stochastiques homogènes. Compositio Math., 7:283–339, 1940.

    Google Scholar 

  13. P. Lévy. Processus Stochastiques et Mouvement Brownien. Gauthier-Villars, Paris, 1948.

    MATH  Google Scholar 

  14. D. B. Ray. Resolvents, transition functions, and strongly Markovian processes. Ann. of Math., 70:43–72, 1959.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. V. Skorohod. Stochastic equations for diffusion processes with a boundary. Teor. Verojatnost. i Primenen, 6:287–298, 1961.

    MathSciNet  Google Scholar 

  16. A. V. Skorohod. Stochastic equations for diffusion processes with boundaries. II. Teor. Verojatnost. i Primenen, 7:5–25, 1962.

    Google Scholar 

  17. H. F. Trotter. A property of Brownian motion paths. Illinois J. Math., 2:425–433, 1958.

    MathSciNet  MATH  Google Scholar 

  18. A. D. Ventcel’. Semigroups of operators that correspond to a generalized differential operator of second order (Russian). Dokl. Akad. Nauk SSSR, 111:269–272, 1956.

    Google Scholar 

  19. V. A. Volkonskii. Random time substitution in strong Markov processes. Teor. Veroyatnost. i Prim., 3:332–350, 1958.

    MathSciNet  Google Scholar 

  20. N. Wiener. Differential space. J. Math. Phys., 2:131–174, 1923.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to W. Feller

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Itô, K., McKean, H.P. (2015). Brownian Motions on a Half Line. In: Grünbaum, F., van Moerbeke, P., Moll, V. (eds) Henry P. McKean Jr. Selecta. Contemporary Mathematicians. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-22237-0_15

Download citation

Publish with us

Policies and ethics