Geometry of KdV (1): Addition and the Unimodular Spectral Classes

Part of the Contemporary Mathematicians book series (CM)


This is the first of three papers on the geometry of KDV. It presents what purports to be a foliation of an extensive function space into which all known invariant manifolds of KDV fit naturally as special leaves. The two main themes are addition (each leaf has its private one) and unimodular spectral classes (each leaf has a spectral interpretation), but first a bit of background.


Frequency Module Present Article Function Space Main Theme Spectral Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. [1]
    V. Bargmann. On the connection between phase shifts and scattering potential. Rev. Modern Phys., 21:488–493, 1949.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    H. Bohr. Fastperiodische Funktionen. Springer-Verlag, Berlin, 1932.CrossRefGoogle Scholar
  3. [3]
    M. M. Crum. Associated Sturm-Liouville systems. Quart. J. Math. Oxford Ser. (2), 6:121–127, 1955.Google Scholar
  4. [4]
    G. Darboux. Sur une proposition relative aux équations linéaires. C. R. Acad. Sci. Paris, 94:1456–1459, 1882.zbMATHGoogle Scholar
  5. [5]
    P. A. Deift. Applications of a commutation formula. Duke Math. J., 45(2):267–310, 1978.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    P. A. Deift and E. Trubowitz. Inverse scattering on the line. Comm. Pure Appl. Math., 32(2):121–251, 1979.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    L. D. Faddeev. Properties of the S-matrix of the one-dimensional Schrödinger equation. Trudy Mat. Inst. Steklov., 73:314–336, 1964.MathSciNetzbMATHGoogle Scholar
  8. [8]
    L. D. Faddeev. Properties of the S-matrix of the one-dimensional Schrödinger equation. Amer. Math. Soc. Transl. (2), 65:139–166, 1967.Google Scholar
  9. [9]
    I. M. Gelfand and B. M. Levitan. On the determination of a differential equation from its spectral function. Izvestiya Akad. Nauk SSSR. Ser. Mat., 15:309–360, 1951. Translation: American Mathematical Translation, 1 (1955), 253–304.Google Scholar
  10. [10]
    E. L. Isaacson, H. P. McKean, and E. Trubowitz. The inverse Sturm-Liouville problem. II. Comm. Pure Appl. Math., 37(1):1–11, 1984.Google Scholar
  11. [11]
    R. Johnson and J. Moser. The rotation number for almost periodic potentials. Comm. Math. Phys., 84(3):403–438, 1982.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    K. Kodaira. The eigenvalue problem for ordinary differential equations of the second order and Heisenberg’s theory of S-matrices. Amer. J. Math., 71:921–945, 1949.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    H. P. McKean. Integrable systems and algebraic curves. In Global Analysis (Proc. Biennial Sem. Canad. Math. Congr., Univ. Calgary, Calgary, Alta., 1978), volume 755 of Lecture Notes in Math., pages 83–200. Springer, Berlin, 1979.Google Scholar
  14. [14]
    H. P. McKean. Variations on a theme of Jacobi. Comm. Pure Appl. Math., 38:669–678, 1985.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    H. P. McKean and E. Trubowitz. Hill’s operator and hyperelliptic function theory in the presence of infinitely many branch points. Comm. Pure Appl. Math., 29:143–226, 1976.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    H. P. McKean and E. Trubowitz. Hill surfaces and their theta functions. Bull. Amer. Math. Soc., 84:1042–1085, 1978.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    H. P. McKean and E. Trubowitz. The spectral class of the quantum-mechanical harmonic oscillator. Comm. Math. Phys., 82(4):471–495, 1981/82.Google Scholar
  18. [18]
    H. P. McKean and P. van Moerbeke. The spectrum of Hill’s equation. Inv. Math., 30:217–274, 1975.CrossRefzbMATHGoogle Scholar
  19. [19]
    H.P. McKean. Units of Hill curves. In Geometry and Analysis, pages 81–94. Indian Acad. Sci., Bangalore, 1980. Papers dedicated to the memory of V. K. Patodi.Google Scholar
  20. [20]
    R. M. Miura. Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation. J. Mathematical Phys., 9:1202–1204, 1968.Google Scholar
  21. [21]
    J. Moser. Various aspects of integrable Hamiltonian systems. In Dynamical Systems (C.I.M.E. Summer School, Bressanone, 1978), volume 8 of Progr. Math., pages 233–289. Birkhäuser Boston, Massachusetts, 1980.Google Scholar
  22. [22]
    J. Moser and J. Pöschel. An extension of a result by Dinaburg and Sinaĭ on quasiperiodic potentials. Comment. Math. Helv., 59(1):39–85, 1984.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    D. Mumford. Tata Lectures on Theta, I, volume 28 of Progr. Math. Birkhäuser, Boston, 1983.Google Scholar
  24. [24]
    D. Mumford. Tata Lectures on Theta, II, volume 43 of Progr. Math. Birkhäuser, Boston, 1984.Google Scholar
  25. [25]
    R. G. Newton. The Marchenko and Gel’fand-Levitan methods in the inverse scattering problem in one and three dimensions. In Conference on Inverse Scattering: Theory and Application (Tulsa, Okla., 1983), pages 1–74. SIAM, Pennsylvania, 1983.Google Scholar
  26. [26]
    M. H. Stone. Linear Transformations in Hilbert Space, volume 15 of American Mathematical Society Colloquium Publications. American Mathematical Society, Rhode Island, 1932.Google Scholar
  27. [27]
    H. Weyl. Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen. Math. Ann., 68(2):220–269, 1910.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    N. Wiener and P. Masani. The prediction theory of multivariate stochastic processes. I. The regularity condition. Acta Math., 98:111–150, 1957.Google Scholar
  29. [29]
    N. Wiener and P. Masani. The prediction theory of multivariate stochastic processes. II. The linear predictor. Acta Math., 99:93–137, 1958.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Courant InstituteNew York UniversityNew YorkUSA

Personalised recommendations