Skip to main content

Entanglement of High Angular Momenta

  • Chapter
  • First Online:
  • 1118 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The content of this chapter is mainly based on the publication “Quantum entanglement of high angular momenta” (Fickler et al., Science 338:640, 2012, [1]). The chapter will describe a novel way of entangling two photons in the transverse spatial degree of freedom (DOF) in a very efficient, clean and flexible way. Moreover, it allows the entanglement of very higher-order modes, which carry a large amount of orbital angular momentum (OAM) quanta. To verify the generated entanglement of high OAM, a novel technique was developed to test the non-classicality of the state only by looking at its intensity structure. Both, the novel way to entangle two photons in the transverse spatial DOF and the new method for verifying entanglement, led to the demonstration of entanglement of the highest quantum number that has been experimentally shown till date.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    As it was shown earlier, the photon state can be considered to be a vector polarization state with transverse spatially varying polarization. See Sect. 2.2.5 for more information.

  2. 2.

    A measurement of the actual pump and down conversion wavelength identified both values to be 405.5 nm and 811 nm (at 30 \(^\circ \)C crystal temperature). However, in all later descriptions the wavelengths will be labeled with “405 nm” for the pump and “810 nm” for the down converted photon pairs.

  3. 3.

    One should be careful with the term “macroscopic”. There is no generally accepted definition about when an object or a property connected to it, can be considered macroscopic. A possible and loose definition can be found in the paper of Leggett [10].

  4. 4.

    The scope of the experiment in [17] is a different one. There, the focus was to increase the dimensionality of entanglement.

  5. 5.

    In an earlier investigation [1] an erroneous witness was introduced and used to show entanglement. Here, we show that only for the highest OAM quanta, namely the state , a direct evaluation of an entanglement witness is not tenable anymore. However, it is still possible to demonstrate that the measurements cannot be described by a separable state, hence the claims from [1] remain the same.

  6. 6.

    The accidental coincidences are calculated according to \(\textit{accs}=S_1*S_2*\tau \), where \(S_i\) labels the singles behind both slit-wheels \(i=1,2\) and \(\tau \) stands for the coincidence window.

References

  1. Fickler, R., et al. (2012). Quantum entanglement of high angular momenta. Science, 338, 640.

    Article  ADS  Google Scholar 

  2. Jesacher, A. (2009). Applications of spatial light modulators for optical trapping and image processing. Ph.D. thesis, Leopold-Franzens University.

    Google Scholar 

  3. Fedrizzi, A. (2008). Fundamental experiments with a high brightness source of entangled photons. Ph.D. thesis, University of Vienna.

    Google Scholar 

  4. Kim, T., Fiorentino, M., & Wong, F. N. C. (2006). Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer. Physical Review A, 73, 012316.

    Article  ADS  Google Scholar 

  5. Fedrizzi, A., Herbst, T., Poppe, A., Jennewein, T., & Zeilinger, A. (2007). A wavelength-tunable fiber-coupled source of narrowband entangled photons. Optics Express, 15, 15377.

    Article  ADS  Google Scholar 

  6. Żukowski, M., & Pykacz, J. (1988). Bell’s theorem: Proposition of realizable experiment using linear momenta. Physics Letters A, 127, 1.

    Article  ADS  Google Scholar 

  7. Ramelow, S., Ratschbacher, L., Fedrizzi, A., Langford, N. K., & Zeilinger, A. (2009). Discrete tunable color entanglement. Physical Review Letters, 103, 253601.

    Article  ADS  Google Scholar 

  8. Nagali, E., et al. (2009). Quantum information transfer from spin to orbital angular momentum of photons. Physical Review Letters, 103, 013601.

    Article  ADS  Google Scholar 

  9. Galvez, E.J., Nomoto, S., Schubert, W. & Novenstern, M. (2011). Polarization-spatial-mode entanglement of photon pairs. In International Conference on Quantum Information, Washington, Optical Society of America.

    Google Scholar 

  10. Leggett, A. J. (2002). Testing the limits of quantum mechanics: Motivation, state of play, prospects. Journal of Physics: Condensed Matter, 14, R415.

    ADS  Google Scholar 

  11. Aspelmeyer, M., Meystre, P., & Schwab, K. (2012). Quantum optomechanics. Physics Today, 65, 29.

    Article  Google Scholar 

  12. Mair, A., Vaziri, A., Weihs, G., & Zeilinger, A. (2001). Entanglement of the orbital angular momentum states of photons. Nature, 412, 313.

    Article  ADS  Google Scholar 

  13. Miatto, F. M., Yao, A. M., & Barnett, S. M. (2011). Full characterization of the quantum spiral bandwidth of entangled biphotons. Physical Review A, 83, 033816.

    Article  ADS  Google Scholar 

  14. Jack, B., et al. (2009). Precise quantum tomography of photon pairs with entangled orbital angular momentum. New Journal of Physics, 11, 103024.

    Article  ADS  Google Scholar 

  15. Pires, H. D. L., Florijn, H. C. B., & van Exter, M. P. (2010). Measurement of the spiral spectrum of entangled two-photon states. Physical Review Letters, 104, 020505.

    Article  Google Scholar 

  16. Romero, J., Giovannini, D., Franke-Arnold, S., Barnett, S. M., & Padgett, M. J. (2012). Increasing the dimension in high-dimensional two-photon orbital angular momentum entanglement. Physical Review A, 86, 012334.

    Article  ADS  Google Scholar 

  17. Krenn, M., et al. (2014). Generation and confirmation of a (100 \(\times \) 100)-dimensional entangled quantum system. Proceedings of the National Academy of Sciences, 11, 6243.

    Article  ADS  Google Scholar 

  18. Svozilík, J., Peřina, J, Jr, & Torres, J. P. (2012). High spatial entanglement via chirped quasi-phase-matched optical parametric down-conversion. Physical Review A, 86, 052318.

    Article  ADS  Google Scholar 

  19. Campbell, G., Hage, B., Buchler, B., & Lam, P. K. (2012). Generation of high-order optical vortices using directly machined spiral phase mirrors. Applied Optics, 51, 873.

    Article  ADS  Google Scholar 

  20. Shen, Y., et al. (2013). Generation and interferometric analysis of high charge optical vortices. Journal of Optics, 15, 044005.

    Article  ADS  Google Scholar 

  21. Jesacher, A., Fürhapter, S., Maurer, C., Bernet, S., & Ritsch-Marte, M. (2006). Holographic optical tweezers for object manipulations at an air-liquid surface. Optics Express, 14, 6342.

    Article  ADS  Google Scholar 

  22. Nielsen, M. A., & Chuang, I. L. (2010). Quantum computation and quantum information. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  23. Audretsch, J. (2008). Entangled systems. New York: Wiley.

    Google Scholar 

  24. Jha, A. K., Agarwal, G. S., & Boyd, R. W. (2011). Supersensitive measurement of angular displacements using entangled photons. Physical Review A, 83, 053829.

    Article  ADS  Google Scholar 

  25. D’Ambrosio, V., et al. (2013). Photonic polarization gears for ultra-sensitive angular measurements. Nature Communications, 4, 2432.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Fickler .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fickler, R. (2016). Entanglement of High Angular Momenta. In: Quantum Entanglement of Complex Structures of Photons. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-22231-8_3

Download citation

Publish with us

Policies and ethics