Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1043 Accesses

Abstract

The physics of light is one of the oldest fields in science and has fascinated many well-known scientists over the last centuries. In the 17th century, a famous contradictory discussion arose when Newton introduced the concept of particles of light, while Huygens described light as a wave-like phenomenon. The latter description was successfully tested in many classic experiments, e.g. the double-slit experiment from Young, and reached its peak popularity in the 19th century. Maxwell formulated his famous description of light as an electromagnetic wave, which might be considered as one of the greatest achievements in physics. However, in the early 20th century, the model was questioned again when Einstein reintroduced the concept of particles of light, nowadays called photons, to explain the photoelectric effect. His explanation can be considered (along with Planck’s quantum hypothesis in the description of black body radiation) as one of the starting points of quantum mechanics, the most successful theory we know today. This very brief (oversimplified and incomplete) historical note shows that light has often been in the heart of many fruitful discussions that have yielded a better understanding of physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The interested reader may consult the textbook by Andrews and Babiker [18] for a broader discussion.

References

  1. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C., & Woerdman, J. P. (1992). Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 45, 8185.

    Article  ADS  Google Scholar 

  2. He, H., Friese, M., Heckenberg, N., & Rubinsztein-Dunlop, H. (1995). Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Physical Review Letters, 75, 826.

    Article  ADS  Google Scholar 

  3. Fürhapter, S., Jesacher, A., Bernet, S., & Ritsch-Marte, M. (2005). Spiral phase contrast imaging in microscopy. Optics Express, 13, 689.

    Article  ADS  Google Scholar 

  4. Tamburini, F., et al. (2012). Encoding many channels on the same frequency through radio vorticity: first experimental test. New Journal of Physics, 14, 033001.

    Article  ADS  Google Scholar 

  5. Wang, J., et al. (2012). Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics, 6, 488.

    Article  ADS  Google Scholar 

  6. Bozinovic, N., et al. (2013). Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545.

    Article  ADS  Google Scholar 

  7. Siviloglou, G. A., Broky, J., Dogariu, A., & Christodoulides, D. N. (2007). Observation of accelerating airy beams. Physical Review Letters, 99, 213901.

    Article  ADS  Google Scholar 

  8. Broky, J., Siviloglou, G. A., Dogariu, A., & Christodoulides, D. N. (2008). Self-healing properties of optical airy beams. Optics Express, 16, 12880.

    Article  ADS  Google Scholar 

  9. Mair, A., Vaziri, A., Weihs, G., & Zeilinger, A. (2001). Entanglement of the orbital angular momentum states of photons. Nature, 412, 313.

    Article  ADS  Google Scholar 

  10. Leach, J., et al. (2010). Quantum correlations in optical angle-orbital angular momentum variables. Science, 329, 662.

    Article  ADS  Google Scholar 

  11. Jack, B., et al. (2011). Demonstration of the angular uncertainty principle for single photons. Journal of Optics, 13, 064017.

    Article  ADS  Google Scholar 

  12. Romero, J., et al. (2011). Entangled optical vortex links. Physical Review Letters, 106, 100407.

    Article  ADS  Google Scholar 

  13. Vaziri, A., Weihs, G., & Zeilinger, A. (2002). Experimental two-photon, three-dimensional entanglement for quantum communication. Physical Review Letters, 89, 240401.

    Article  ADS  Google Scholar 

  14. Dada, A. C., Leach, J., Buller, G. S., Padgett, M. J., & Andersson, E. (2011). Experimental high-dimensional two-photon entanglement and violations of generalized bell inequalities. Nature Physics, 7, 677.

    Article  ADS  Google Scholar 

  15. Krenn, M., et al. (2014). Generation and confirmation of a (100 \(\times \) 100)-dimensional entangled quantum system. Proceedings of the National Academy of Sciences, 11, 6243.

    Article  ADS  Google Scholar 

  16. Gröblacher, S., Jennewein, T., Vaziri, A., Weihs, G., & Zeilinger, A. (2006). Experimental quantum cryptography with qutrits. New Journal of Physics, 8, 75.

    Article  ADS  Google Scholar 

  17. Langford, N. K., et al. (2004). Measuring entangled qutrits and their use for quantum bit commitment. Physical Review Letters, 93, 053601.

    Article  ADS  Google Scholar 

  18. Andrews, D . L., & Babiker, M. (2012). The angular momentum of light. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  19. McLaren, M., et al. (2012). Entangled Bessel-Gaussian beams. Optics Express, 20, 23589.

    Article  ADS  Google Scholar 

  20. McLaren, M., Mhlanga, T., Padgett, M. J., Roux, F. S., & Forbes, A. (2014). Self-healing of quantum entanglement after an obstruction. Nature Communications, 5, 3248.

    Article  ADS  Google Scholar 

  21. Krenn, M., et al. (2013). Entangled singularity patterns of photons in Ince-Gauss modes. Physical Review A, 87, 012326.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Fickler .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fickler, R. (2016). Preamble. In: Quantum Entanglement of Complex Structures of Photons. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-22231-8_1

Download citation

Publish with us

Policies and ethics