Skip to main content

Introduction to Theory and Phenomenology

  • Chapter
  • First Online:
Search for Exotic Mono-jet Events

Part of the book series: Springer Theses ((Springer Theses))

  • 240 Accesses

Abstract

This chapter describes the theoretical and phenomenological aspects relevant for this thesis. In Sect. 1.1, a brief introduction to the SM theory and to Quantum CromoDynamics (QCD) is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Assuming no branching fraction for Higgs decays to exotic particles.

  2. 2.

    This is usually the name of the hypothetical theory that would unify gravity and the other three forces.

  3. 3.

    Gauginos are combinations of the SUSY electroweak and Higgs fermionic fields.

  4. 4.

    The squark and the gluino are the superpartner of the squark and gluon, respectively.

References

  1. S.L. Glashow, Partial symmetries of weak interactions. Nucl. Phys. 22, 579–588 (1961)

    Article  Google Scholar 

  2. S. Weinberg, A model of leptons. Phys. Rev. Lett. 19 (1967)

    Google Scholar 

  3. A. Salam, Gauge unification of fundamental forces. Rev. Mod. Phys. 52, 525538 (1980)

    Article  MathSciNet  Google Scholar 

  4. J. Beringer et al., Particle data group. Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  5. ATLAS Collaboration, Observation of a new particle in the search for the standard model higgs boson with the ATLAS detector at the LHC. Phys. Rev. D 716, 1–29 (2012a)

    Google Scholar 

  6. C.M.S. Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Rev. D 716, 30–61 (2012b)

    Google Scholar 

  7. ATLAS Collaboration, Combined measurements of the mass and signal strength of the Higgs-like boson with the ATLAS detector using up to 25 fb\(^{-1}\) of proton-proton collision data. (ATLAS-CONF-2013-014) (2013a)

    Google Scholar 

  8. F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  9. P.W. Higgs, Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 13, 508 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  10. C.R. Hagen, G.S. Guralnik, T.W.B. Kibble, Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585 (1964)

    Article  ADS  Google Scholar 

  11. D.J. Gross, F. Wilczek, Asymptotically free Gauge Theories. Phys. Rev. D 8, 3633 (1973)

    Article  ADS  Google Scholar 

  12. S. Bethke, Eur. Phys. J. C 64, 689 (2009)

    Article  ADS  Google Scholar 

  13. T.J. Stelzer, M.L. Mangano, Tools for the simulation of hard hadronic collisions

    Google Scholar 

  14. V.V. Sudakov, Vertex parts at very high energies in quantum electrodynamics. Sov. Phys. JETP 3, 65 (1956)

    MathSciNet  MATH  Google Scholar 

  15. S. Mrenna, T. Sjostrand, P. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006)

    Google Scholar 

  16. G. Corcella et al., HERWIG 6: An event generator for hadron emission reactions with interfering gluons (including supersymmetric processes). JHEP 01, 010 (2001)

    Article  ADS  Google Scholar 

  17. J. Forshaw, J. Butterworth, M. Seymour, Multiparton interactions in photoproduction at hera. Z. Phys., C72, 637–646 (1996)

    Google Scholar 

  18. M. Mangano et al., Alpgen, a generator for hard multiparton processes in hadronic collisions. JHEP 07, 001 (2003)

    Article  ADS  Google Scholar 

  19. F. Caravaglios, M.L. Mangano, M. Moretti, R. Pittau, A new approach to multi-jet calculations in hadron collisions. Nucl. Phys. B 539, 215 (1999)

    Article  ADS  Google Scholar 

  20. J.M. Campbell, R.K. Ellis, Phys. Rev. D 65, 113007 (2002)

    Article  ADS  Google Scholar 

  21. R. Gavin, Y. Li, F. Petriello, S. Quackenbush, FEWZ 2.0: A code for hadronic Z production at next-to- next-to-leading order (2010)

    Google Scholar 

  22. S. Frixione, B.R. Webber, The MC@NLO 3.2 event generator (2006)

    Google Scholar 

  23. F. Krauss, M. Schonherr, S. Schumann, et al., T. Gleisberg, S. Hoeche, Event generation with SHERPA 1.1. JHEP 007, 0902 (2009)

    Google Scholar 

  24. R. Kuhn, B.R. Webber, S. Catani, F. Krauss, JHEP (2001)

    Google Scholar 

  25. P.N. Keith Hamilton, Improving nlo-parton shower matched simulations with higher order matrix elements (2010)

    Google Scholar 

  26. C. Oleari, S. Alioli, P. Nason, E. Re, A general framework for implementing nlo calculations in shower monte carlo programs: the powheg box. JHEP 1006 (2010)

    Google Scholar 

  27. N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429, 263–272 (1998). doi:10.1016/S0370-2693(98)00466-3

    Google Scholar 

  28. G.F. Giudice, R. Rattazzi, J.D. Wells, Quantum gravity and extra dimensions at high-energy colliders (2000)

    Google Scholar 

  29. T. Kaluza. Zum Unittsproblem in der Physik. Sitzungsber. Preuss. Akad. Wiss. Berlin. (Math. Phys.) 966972 (1921)

    Google Scholar 

  30. O. Klein, Quantentheorie und fnfdimensionale Relativittstheorie. Zeitschrift fr Physik A 37, 895–906 (1926)

    Article  ADS  Google Scholar 

  31. G. Bertone, D. Hooper, J. Silk, Particle dark matter: Evidence, candidates and constraints. Phys. Rept. 405, 279–390 (2005). doi:10.1016/j.physrep.2004.08.031

    Article  ADS  Google Scholar 

  32. A.H. Broeils, K.G. Begeman, R.H. Sanders, Extended rotation curves of spiral galaxies—dark haloes and modified dynamics. Monthly Not. R. Astron. Soc. 249, 523 (1991)

    Article  ADS  Google Scholar 

  33. F. Zwicky, On the masses of Nebulae and of clusters of Nebulae. Astrophys. J. 217 (1937)

    Google Scholar 

  34. M. Girardi, et al., Optical luminosities and mass-to-light ratios of nearby galaxy clusters. Astrophys. J. 62 (2000)

    Google Scholar 

  35. Planck Collaboration, Planck 2013 results. I. Overview of products and scientific results (2013b)

    Google Scholar 

  36. V. Zacek, D. Matter, Proceedings of the 2007 Lake Louise Winter Institute (2007)

    Google Scholar 

  37. F. Cappella, R. Cerulli, C. Dai, et al., R. Bernabei, P. Belli, New results from DAMA/LIBRA. Eur. Phys. J. C67, 39 (2010)

    Google Scholar 

  38. R. Agnese, et al., (CDMS Collaboration), Dark matter search results using the silicon detectors of CDMS II (2013)

    Google Scholar 

  39. I. Bavykina, A. Bento, C. Bucci, et al., G. Angloher, M. Bauer, Results from 730 kg days of the CRESST-II Dark Matter Search. Eur. Phys. J. C72, 1971 (2012)

    Google Scholar 

  40. J. Colaresi, J. Collar, J. Diaz Leon, et al., C. Aalseth, P. Barbeau, Search for an annual modulation in a P-type point contact germanium dark matter detector. Phys. Rev. Lett. 141301 (2011)

    Google Scholar 

  41. C. Aalseth et al., CoGeNT Collaboration. Results from a search for light-mass dark matter with a p-type point contact germanium detector. Phys. Rev. Lett. 106, 131301 (2011)

    Article  ADS  Google Scholar 

  42. XENON100 Collaboration, Dark matter results from 225 live days of xenon100 data

    Google Scholar 

  43. E. Aprile et al., Dark matter results from 100 live days of XENON100 data. Phys. Rev. Lett. 107, 131302 (2011). doi:10.1103/PhysRevLett.107.131302

    Article  ADS  Google Scholar 

  44. M. Aguilar, et al., (AMS Collaboration), First result from the alpha magnetic spectrometer on the international space station: Precision measurement of the positron fraction in primary cosmic rays of 0.5350 GeV. Phys. Rev. Lett. 141102 (2013)

    Google Scholar 

  45. M. Ackermann, et al., Constraining dark matter models from a combined analysis of milky way satellites with the fermi large area telescope. Phys. Rev. Lett. 107, 241302 (2011). (6 pages, 2 figures/ Contact authors: Johann Cohen-Tanugi, Jan Conrad, and Maja Llena Garde)

    Google Scholar 

  46. PAMELA Collaboration, An anomalous positron abundance in cosmic rays with energies 1.5100 GeV. Nature 458, 607–609 (2009)

    Google Scholar 

  47. J. Beringer, et al., (Particle Data Group). http://pdg.lbl.gov/2012/reviews/rpp2012-rev-dark-matter.pdf

  48. R. Trotta et al., The impact of priors and observables on parameter inferences in the Constrained MSSM. JHEP 024, 0812 (2008a)

    Google Scholar 

  49. O. Buchmueller et al., The CMSSM and NUHM1 in Light of 7 TeV LHC, Bs\(\rightarrow \mu ^+\mu ^- \) and XENON100 Data. Eur. Phys. J. C 71, 1634 (2011)

    Article  ADS  Google Scholar 

  50. Jessica Goodman, Masahiro Ibe, Arvind Rajaraman, William Shepherd, Tim M.P. Tait et al., Constraints on dark matter from colliders. Phys. Rev. D 82, 116010 (2010). doi:10.1103/PhysRevD.82.116010

    Article  ADS  Google Scholar 

  51. A. Pukhov, G. Belanger, F. Boudjema, A. Semenov, Dark matter direct detection rate in a generic model with micrOMEGAs2.2. Comput. Phys. Commun. 747–767 (2008)

    Google Scholar 

  52. Patrick J. Fox, Roni Harnik, Joachim Kopp, Yuhsin Tsai, Missing energy signatures of dark matter at the LHC. Phys. Rev. D 85, 056011 (2012). doi:10.1103/PhysRevD.85.056011. 22 pages, 10 figures

    Article  ADS  Google Scholar 

  53. H.P. Nilles, Supersymmetry, supergravity and particle physics. Phys. Rep. 110, 1 (1984)

    Article  ADS  Google Scholar 

  54. R. Arnowitt, A.H. Chamseddine, P. Nath, Locally supersymmetric grand unification. Phys. Rep. 49, 970 (1982)

    Google Scholar 

  55. G. Giudice, R. Rattazzi, Theories with gauge mediated supersymmetry breaking. Phys. Rept. 322, 419–499 (1999)

    Article  ADS  Google Scholar 

  56. P. Fayet, Mixing between gravitational and weak interactions through the massive gravitino. Phys. Lett. B 70, 461 (1977)

    Article  ADS  Google Scholar 

  57. D. Dominici, F. Feruglio, R. Casalbuoni, S. De Curtis, R. Gatto, A gravitino—goldstino high-energy equivalence theorem. Phys. Lett. B 215, 313 (1988)

    Article  ADS  Google Scholar 

  58. M. Klasen, G. Pignol, New results for light gravitinos at hadron colliders: Tevatron limits and LHC perspectives. Phys. Rev. D 75, 115003 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Rossetti .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rossetti, V. (2016). Introduction to Theory and Phenomenology. In: Search for Exotic Mono-jet Events . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-22225-7_1

Download citation

Publish with us

Policies and ethics