Transmission of Energy

  • Nicolás RubidoEmail author
Part of the Springer Theses book series (Springer Theses)


In this chapter we provide exact and approximate results for the problem of the Transmission of Energy in Complex Networks. The problem is the understanding of how the energy transmission between the providers of energy (such as power plants, renewable sources, or any type of supplying entity) and the consumers of energy (such as factories, homes, or any type of demand entity) depends on the topology and the structure of a network that inter-connects the two sets of entities and the dynamical behaviour of all the entities in the network, such as depicted in Fig.  1.4. Moreover, we want to provide safe strategies to create self-controlled and stable systems (i.e., resilient to failures, structural modifications, and dynamical changes) that have an optimal (i.e., with less cost and power dissipation) and smart (i.e., allowing the decentralisation of large power-plants into small fluctuating renewable energy-sources) energy transmission.


Power Grid Model Erdos-Renyi Network (ERNs) Generator Terminal Bus Laplacian Matrix Network Flow Conservation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G. Kron, A set of principles to interconnect the solutions of physical systems. J. Appl. Phys. 24(8), 965–980 (1953)CrossRefADSMathSciNetzbMATHGoogle Scholar
  2. 2.
    G. Kirchhoff, Vorlesungen über Mechanik (Wilhelm, Ed., Wien, 1864–1928)Google Scholar
  3. 3.
    H. Frank, I.T. Frisch, Communication, Transmission, and Transportation Networks (Addison-Wesley, Reading, 1971)zbMATHGoogle Scholar
  4. 4.
    M.S. Bazaraa, J.J. Jarvis, H.D. Sherali, Linear Programming and Network Flows, 2nd edn. (Wiley, New York, 1990)zbMATHGoogle Scholar
  5. 5.
    R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows: Theory, Algorithms, and Applications, Chaps. 1 and 3 (Prentice-Hall, Englewood Cliffs, 1993)Google Scholar
  6. 6.
    M.T. Brown, A picture is worth a thousand words: energy systems language and simulation. Ecol. Model. 178, 83–100 (2004)CrossRefGoogle Scholar
  7. 7.
    E. Katifori, G.J. Szollosi, M.O. Magnasco, Damage and fluctuations induce loops in optimal transport networks. Phys. Rev. Lett. 104, 048704 (2010)Google Scholar
  8. 8.
    D. Hu, D. Cai, Adaptation and optimization of biological transport networks. Phys. Rev. Lett. 111, 138701 (2013)Google Scholar
  9. 9.
    G.G. Batrouni, A. Hansen, Fracture in three-dimensional fuse networks. Phys. Rev. Lett. 80(2), 325 (1998)Google Scholar
  10. 10.
    C.F.S. Pinheiro, A.T. Bernarde, Scale-free fuse network and its robustness. Phys. Rev. E 72, 046709 (2005)Google Scholar
  11. 11.
    N. Rubido, C. Grebogi, M.S. Baptista, Structure and function in flow networks. Europhys. Lett. 101, 68001 (2013)Google Scholar
  12. 12.
    N. Rubido, C. Grebogi, M.S. Baptista, Resilient evolving supply-demand networks. Phys. Rev. E 89, 012801 (2014)Google Scholar
  13. 13.
    M. Haenggi, Analogy between data networks and electric networks. Electron. Lett. 38(12), 553–554 (2002)CrossRefGoogle Scholar
  14. 14.
    K.-I. Goh, B. Kahng, D. Kim, Universal behavior of load distribution in scale-free networks. Phys. Rev. Lett. 87(27), 278701 (2001)Google Scholar
  15. 15.
    E. López, S.V. Buldyrev, S. Havlin, H.E. Stanley, Anomalous transport in scale-free networks. Phys. Rev. Lett. 94, 248701 (2005)Google Scholar
  16. 16.
    S. Carmi, Z. Wu, S. Havlin, H.E. Stanley, Transport in networks with multiple sources and sinks. Europhys. Lett. 84, 28005 (2008)Google Scholar
  17. 17.
    R. Yang, W.-X. Wang, Y.-C. Lai, G. Chen, Optimal weighting scheme for suppressing cascades and traffic congestion in complex networks. Phys. Rev. E 79, 026112 (2009)Google Scholar
  18. 18.
    W.-X. Wang, Y.-C. Lai, Abnormal cascading on complex networks. Phys. Rev. E 80, 036109 (2009)Google Scholar
  19. 19.
    H. Zhang, Y. Yang, Resistance distance and Kirchhoff index in circulant graphs. Int. J. Quantum Chem. 107, 330–339 (2007)CrossRefADSGoogle Scholar
  20. 20.
    N. Rubido, A.C. Martí, E. Bianco-Martínez, C. Grebogi, M.S. Baptista, C. Masoller, Exact detection of direct links in networks of interacting dynamical units. New J. Phys. 16, 093010 (2014)Google Scholar
  21. 21.
    P. Erdös, A. Rényi, On random graphs I. Publ. Math. Debr. 6, 290–297 (1959)zbMATHGoogle Scholar
  22. 22.
    D.J. Watts, S.H. Strogatz, Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRefADSGoogle Scholar
  23. 23.
    F.R.K. Chung, Spectral Graph Theory (American Mathematical Society, Providence, 1997)zbMATHGoogle Scholar
  24. 24.
    H. Chen, F. Zhang, Resistance distance and the normalized Laplacian spectrum. Discret. Appl. Math. 155, 654–661 (2007)CrossRefzbMATHGoogle Scholar
  25. 25.
    A. Ghosh, S. Boyd, A. Saberi, Minimizing effective resistance of a graph. SIAM Rev. 50(1), 37–66 (2008)CrossRefADSMathSciNetzbMATHGoogle Scholar
  26. 26.
    M.E.J. Newman, Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133 (2004)Google Scholar
  27. 27.
    M.E.J. Newman, M. Girvan, Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)Google Scholar
  28. 28.
    M.E.J. Newman, Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103, 8577–8582 (2006)CrossRefADSGoogle Scholar
  29. 29.
    D. Randall, Rapidly mixing Markov chains with applications in computer science and physics. Comput. Sci. Eng. 6, 1521–9615 (2006)Google Scholar
  30. 30.
    A. Lancichinetti, S. Fortunato, F. Radicchi, Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78, 046110 (2008)Google Scholar
  31. 31.
    F. Dörfler, F. Bullo, Spectral analysis of synchronization in a lossless structure-preserving power network model. IEEE Int. Conf. Smart Grid Commun. 179–184 (2010)Google Scholar
  32. 32.
    A.R. Bergen, D.J. Hill, A structure preserving model for power system stability analysis. IEEE Trans. Power Appl. Syst. 100, 25–35 (1981)CrossRefGoogle Scholar
  33. 33.
    Y. Susuki, I. Mezić, T. Hikihara, Global swing instability in the new England power grid model. in Proceedings of the IEEE 2009 conference on American Control Conference pp. 3446–3451 (2009)Google Scholar
  34. 34.
    Y. Susuki, I. Mezić, T. Hikihara, Coherent swing instability of power grids. J. Nonlinear Sci. 21, 403–439 (2011)CrossRefADSMathSciNetzbMATHGoogle Scholar
  35. 35.
    F. Pasqualetti, A. Bicchi, F. Bullo, A graph-theoretical characterization of power network vulnerabilities. in Proceedings of the IEEE 2011 conference on American Control Conference pp. 3918–3923 (2011)Google Scholar
  36. 36.
    F. Dörfler, F. Bullo, Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators. SIAM J. Control Optim. 50(3), 1616–1642 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  37. 37.
    F. Dörfler, M. Chertkov, F. Bullo, Synchronization in complex oscillator networks and smart grids. Proc. Natl. Acad. Sci. 110(6), 2005–2010 (2013)CrossRefADSMathSciNetGoogle Scholar
  38. 38.
    G.A. Pagani, M. Aiello, The power grid as a complex network: a survey. Phys. A 392, 2688–2700 (2013)CrossRefMathSciNetGoogle Scholar
  39. 39.
    F. Dörfler, F. Bullo, Kron reduction of graphs with applications to electrical networks. IEEE Trans. Circuit Syst. I: Regul. Pap. 60(1), 150–163 (2013)CrossRefGoogle Scholar
  40. 40.
    G.A. Pagani, M. Aiello, Power grid complex network evolutions for the smart grid. Phys. A 396, 248–266 (2014)CrossRefGoogle Scholar
  41. 41.
    P.H.J. Nardelli, N. Rubido, C. Wang, M.S. Baptista, C. Pomalaza-Raez, P. Cardieri, M. Latva-aho, Models for the modern power-grid. Eur. Phys. J.: Spec. Top. 10, 1–15 (2014)Google Scholar
  42. 42.
    Z. Zheng, G. Hu, B. Hu, Phase slips and phase synchronization of coupled oscillators. Phys. Rev. Lett. 81(24), 5318 (1998)Google Scholar
  43. 43.
    E. Canale, P. Monzón, Global properties of Kuramoto bidirectionally coupled oscillators in a ring structure. IEEE Control Appl. (CCA) & IEEE Int. Control (ISIC), 183–188 (2009)Google Scholar
  44. 44.
    H.F. El-Nashar, P. Muruganandam, F.F. Ferreira, H.A. Cerdeira, Transition to complete synchronization in phase-coupled oscillators with nearest neighbor coupling. Chaos 19, 013103 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Universidad de la RepúblicaMontevideoUruguay

Personalised recommendations