• Nicolás RubidoEmail author
Part of the Springer Theses book series (Springer Theses)


Complexity, a century-old problem with seemingly endless possibilities, has driven scientists from all disciplines within Natural and Computing Sciences to test the limits of their paradigms and theories, eventually, bringing them together in the hope of creating a new paradigm that could shed light into the Complexity problems. One of the most intensely scrutinised problems in this emerging cross- and inter-disciplinary Science of Complexity, is to determine the mathematical principles and underlying mechanisms that give rise to the emergence of collective behaviour in complex systems, namely, systems that are composed by many interacting units or sub-systems (Fig. 1.1). Researchers across the world have turned their attention into finding the minimal set of variables and conditions that one needs to explain and predict these collective behaviour, which emerge without the need for any central control or external driving force, namely, they self-organise.


Wind Farm Collective Behaviour Mathematical Principle Collective Phenomenon Dynamical Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2003)Google Scholar
  2. 2.
    S. Strogatz, Sync: The Emerging Science of Spontaneous Order (Hyperion, New York, 2003)Google Scholar
  3. 3.
    S.C. Manrubia, A.S. Mikhailov, D.H. Zanette, Emergence of Dynamical Order Synchronization Phenomena in Complex Systems (World Scientific, Singapore, 2004)Google Scholar
  4. 4.
    A.R. Bergen, D.J. Hill, A structure preserving model for power system stability analysis. IEEE Trans. Power Appl. Syst. 100, 25–35 (1981)CrossRefGoogle Scholar
  5. 5.
    J.A. Acebrón, L.L. Bonilla, C.J. Pérez Vicente, F. Ritort, R. Spigler, The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)CrossRefADSGoogle Scholar
  6. 6.
    M. Perrin, G.L. Lippi, A. Politi, Phase transition in a radiation-matter interaction with recoil and collisions. Phys. Rev. Lett. 86(20), 4520 (2001)Google Scholar
  7. 7.
    N. Rubido, C. Grebogi, M.S. Baptista, Structure and function in flow networks. Europhys. Lett. 101, 68001 (2013)Google Scholar
  8. 8.
    N. Rubido, C. Grebogi, M.S. Baptista, Resilient evolving supply-demand networks. Phys. Rev. E 89, 012801 (2014)Google Scholar
  9. 9.
    M.T. Brown, A picture is worth a thousand words: energy systems language and simulation. Ecol. Model. 178, 83–100 (2004)CrossRefGoogle Scholar
  10. 10.
    E. Katifori, G.J. Szollosi, M.O. Magnasco, Damage and fluctuations induce loops in optimal transport networks. Phys. Rev. Lett. 104, 048704 (2010)CrossRefADSGoogle Scholar
  11. 11.
    D. Hu, D. Cai, Adaptation and Optimization of Biological Transport Networks. Phys. Rev. Lett. 111, 138701 (2013)Google Scholar
  12. 12.
    G.G. Batrouni, A. Hansen, Fracture in three-dimensional fuse networks. Phys. Rev. Lett. 80(2), 325 (1998)Google Scholar
  13. 13.
    C.F.S. Pinheiro, A.T. Bernarde, Scale-free fuse network and its robustness. Phys. Rev. E 72, 046709 (2005)CrossRefADSGoogle Scholar
  14. 14.
    F. Dörfler, F. Bullo, Spectral analysis of synchronization in a lossless structure-preserving power network model. IEEE Int. Conf. Smart GridCommun. 179–184 (2010)Google Scholar
  15. 15.
    Y. Susuki, I. Mezić, T. Hikihara, Global swing instability in the new england power grid model, in IEEE 2009 American Control Conference, (2009), pp. 3446–3451Google Scholar
  16. 16.
    Y. Susuki, I. Mezić, T. Hikihara, Coherent swing instability of power grids. J. Nonlinear Sci. 21, 403–439 (2011)CrossRefADSMathSciNetzbMATHGoogle Scholar
  17. 17.
    F. Pasqualetti, A. Bicchi, F. Bullo, A graph-theoretical characterization of power network vulnerabilities, in, IEEE 2011 American Control Conference, (2011), pp. 3918–3923Google Scholar
  18. 18.
    F. Dörfler, F. Bullo, Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators. SIAM J. Control Opt. 50(3), 1616–1642 (2012)CrossRefzbMATHGoogle Scholar
  19. 19.
    F. Dörfler, M. Chertkov, F. Bullo, Synchronization in complex oscillator networks and smart grids. Proc. Natl. Acad. Sci. 110(6), 2005–2010 (2013)CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    G.A. Pagani, M. Aiello, The power grid as a complex network: a survey. Physica A 392, 2688–2700 (2013)CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    G.A. Pagani, M. Aiello, Power grid complex network evolutions for the smart grid. Physica A 396, 248–266 (2014)CrossRefADSGoogle Scholar
  22. 22.
    P.H.J. Nardelli, N. Rubido, C. Wang, M.S. Baptista, C. Pomalaza-Raez, P. Cardieri, M. Latva-aho, Models for the modern power-grid. Eur. Phys. J. Spec. Top. 10, 1–15 (2014)Google Scholar
  23. 23.
    G. Kron, A set of principles to interconnect the solutions of physical systems. J. Appl. Phys. 24(8), 965–980 (1953)CrossRefADSMathSciNetzbMATHGoogle Scholar
  24. 24.
    F. Dörfler, F. Bullo, Kron reduction of graphs with applications to electrical networks. IEEE Trans. Circ. Syst. I: Regul. Pap. 60(1), 150–163 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Universidad de la RepúblicaMontevideoUruguay

Personalised recommendations