Advertisement

Ripple Phase

  • Kiyotaka Akabori
Chapter
  • 211 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter presents synchrotron X-ray study of high resolution structure for the \(P_{\beta ^{{\prime}}}\) ripple phase of the phospholipid dimyristoylphosphatidylcholine (DMPC). Lipid bilayers consisting of DMPC were oriented onto a silicon wafer and hydrated through the vapor in a hydration chamber. First, brief history of the ripple phase is presented. The materials and methods section describes in detail the sample preparation and experimental setups for low and wide angle X-ray scattering (LAXS and WAXS, respectively) from oriented samples. Then, I derive mathematical corrections necessary for analysis of LAXS data. The determined electron density map has a sawtooth profile similar to the result from lower resolution data, but the features are sharper allowing better estimates for the modulated bilayer profile and the distribution of headgroups along the aqueous interface. Moreover, analysis of high resolution wide angle X-ray data shows that the hydrocarbon chains in the longer, major side of the asymmetric sawtooth are packed similarly to the L β F gel phase, with chains in both monolayers coupled and tilted by 18 C in the same direction. The absence of Bragg rods that could be associated with the minor side is consistent with disordered chains, as often suggested in the literature. I conclude with possible future experiments.

Keywords

Ripple Phase Low-angle X-ray Scattering (LAXS) Bragg Rods Wide-angle X-ray Diffraction (WAXS) Dimyristoylphosphatidylcholine (DMPC) 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. 1.
    A. Tardieu, V. Luzzati, F. Reman, Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J. Mol. Biol. 75(4), 711–733 (1973)CrossRefGoogle Scholar
  2. 2.
    R. Koynova, A. Koumanov, B. Tenchov, Metastable rippled gel phase in saturated phosphatidylcholines: calorimetric and densitometric characterization. Biochimica et Biophysica Acta (BBA) – Biomembranes 1285(1), 101–108 (1996)Google Scholar
  3. 3.
    J. Katsaras, S. Tristram-Nagle, Y. Liu, R. Headrick, E. Fontes, P. Mason, J.F. Nagle, Clarification of the ripple phase of lecithin bilayers using fully hydrated, aligned samples. Phys. Rev. E 61(5), 5668 (2000)Google Scholar
  4. 4.
    M.J. Janiak, D.M. Small, G.G. Shipley, Nature of the thermal pretransition of synthetic phospholipids: dimyristoyl- and dipalmitoyllecithin. Biochemistry 15(21), 4575–4580 (1976)CrossRefGoogle Scholar
  5. 5.
    M.J. Janiak, D.M. Small, G.G. Shipley, Temperature and compositional dependence of the structure of hydrated dimyristoyl lecithin. J. Biol. Chem. 254(13), 6068–6078 (1979)Google Scholar
  6. 6.
    D.C. Wack, W.W. Webb, Synchrotron X-ray study of the modulated lamellar phase \(P_{\beta ^{{\prime}}}\) in the lecithin-water system. Phys. Rev. A 40, 2712–2730 (1989)CrossRefADSGoogle Scholar
  7. 7.
    H. Yao, S. Matuoka, B. Tenchov, I. Hatta, Metastable ripple phase of fully hydrated dipalmitoylphosphatidylcholine as studied by small angle X-ray scattering. Biophys. J. 59(1), 252–255 (1991)CrossRefADSGoogle Scholar
  8. 8.
    W.J. Sun, S. Tristram-Nagle, R.M. Suter, J.F. Nagle, Structure of the ripple phase in lecithin bilayers. Proc. Natl. Acad. Sci. 93(14), 7008–7012 (1996)CrossRefADSGoogle Scholar
  9. 9.
    B.A. Cunningham, A.-D. Brown, D.H. Wolfe, W.P. Williams, A. Brain, Ripple phase formation in phosphatidylcholine: effect of acyl chain relative length, position, and unsaturation. Phys. Rev. E 58(3), 3662 (1998)Google Scholar
  10. 10.
    K. Sengupta, V. Raghunathan, J. Katsaras, Structure of the ripple phase in chiral and racemic dimyristoylphosphatidylcholine multibilayers. Phys. Rev. E 59(2), 2455 (1999)Google Scholar
  11. 11.
    K. Sengupta, V. Raghunathan, J. Katsaras, Novel structural features of the ripple phase of phospholipids. Europhys. Lett. 49(6), 722 (2000)Google Scholar
  12. 12.
    K. Sengupta, V.A. Raghunathan, J. Katsaras, Structure of the ripple phase of phospholipid multibilayers. Phys. Rev. E 68, 031710 (2003)CrossRefADSGoogle Scholar
  13. 13.
    K. Mortensen, W. Pfeiffer, E. Sackmann, W. Knoll, Structural properties of a phosphatidylcholine-cholesterol system as studied by small-angle neutron scattering: ripple structure and phase diagram. Biochimica et Biophysica Acta (BBA)-Biomembranes 945(2), 221–245 (1988)Google Scholar
  14. 14.
    J.P. Bradshaw, M.S. Edenborough, P.J. Sizer, A. Watts, Observation of rippled dioleoylphosphatidylcholine bilayers by neutron diffraction. Biochimica et Biophysica Acta (BBA)-Biomembranes 987(1), 111–114 (1989)Google Scholar
  15. 15.
    P.C. Mason, B.D. Gaulin, R.M. Epand, G.D. Wignall, J.S. Lin, Small angle neutron scattering and calorimetric studies of large unilamellar vesicles of the phospholipid dipalmitoylphosphatidylcholine. Phys. Rev. E 59(3), 3361 (1999)Google Scholar
  16. 16.
    J. Woodward IV, J. Zasadzinski, Amplitude, wave form, and temperature dependence of bilayer ripples in the \(P_{\beta ^{{\prime}}}\) phase. Phys. Rev. E 53(4), R3044 (1996)Google Scholar
  17. 17.
    B.R. Copeland, H.M. McConnell, The rippled structure in bilayer membranes of phosphatidylcholine and binary mixtures of phosphatidylcholine and cholesterol. Biochimica et Biophysica Acta (BBA) – Biomembranes 599(1), 95–109 (1980)Google Scholar
  18. 18.
    D. Ruppel, E. Sackmann, On defects in different phases of two-dimensional lipid bilayers. Journal de Physique 44(9), 1025–1034 (1983)CrossRefGoogle Scholar
  19. 19.
    J. Zasadzinski, J. Schneir, J. Gurley, V. Elings, P. Hansma, Scanning tunneling microscopy of freeze-fracture replicas of biomembranes. Science 239(4843), 1013–1015 (1988)CrossRefADSGoogle Scholar
  20. 20.
    R.A. Parente, B.R. Lentz, Phase behavior of large unilamellar vesicles composed of synthetic phospholipids. Biochemistry 23(11), 2353–2362 (1984)CrossRefGoogle Scholar
  21. 21.
    L. Li, J.-X. Cheng, Coexisting stripe-and patch-shaped domains in giant unilamellar vesicles. Biochemistry 45(39), 11819–11826 (2006)CrossRefGoogle Scholar
  22. 22.
    J. Nagle, Theory of lipid monolayer and bilayer phase transitions: effect of headgroup interactions. J. Membr. Biol. 27(1), 233–250 (1976)CrossRefGoogle Scholar
  23. 23.
    T.J. McIntosh, Differences in hydrocarbon chain tilt between hydrated phosphatidylethanolamine and phosphatidylcholine bilayers. A molecular packing model. Biophys. J. 29(2), 237–245 (1980)MathSciNetGoogle Scholar
  24. 24.
    J.F. Nagle, S. Tristram-Nagle, Structure of lipid bilayers. Biochimica et Biophysica Acta (BBA) – Reviews on Biomembranes 1469(3), 159–195 (2000)Google Scholar
  25. 25.
    M.P. Hentschel, F. Rustichelli, Structure of the ripple phase \(P_{\beta ^{{\prime}}}\) in hydrated phosphatidylcholine multimembranes. Phys. Rev. Lett. 66, 903–906 (1991)CrossRefADSGoogle Scholar
  26. 26.
    R. Wittebort, C. Schmidt, R. Griffin, Solid-state carbon-13 nuclear magnetic resonance of the lecithin gel to liquid-crystalline phase transition. Biochemistry 20(14), 4223–4228 (1981)CrossRefGoogle Scholar
  27. 27.
    M.B. Schneider, W.K. Chan, W.W. Webb, Fast diffusion along defects and corrugations in phospholipid \(P_{\beta ^{{\prime}}}\), liquid crystals. Biophys. J. 43(2), 157–165 (1983)CrossRefGoogle Scholar
  28. 28.
    A.H. de Vries, S. Yefimov, A.E. Mark, S.J. Marrink, Molecular structure of the lecithin ripple phase. Proc. Natl. Acad. Sci. 102(15), 5392–5396 (2005)CrossRefADSGoogle Scholar
  29. 29.
    O. Lenz, F. Schmid, Structure of symmetric and asymmetric “ripple” phases in lipid bilayers. Phys. Rev. Lett. 98, 058104 (2007)CrossRefADSGoogle Scholar
  30. 30.
    C.M. Chen, T.C. Lubensky, F.C. MacKintosh, Phase transitions and modulated phases in lipid bilayers. Phys. Rev. E 51(1), 504 (1995)Google Scholar
  31. 31.
    J. Katsaras, V.A. Raghunathan, Molecular chirality and the “ripple” phase of phosphatidylcholine multibilayers. Phys. Rev. Lett. 74, 2022–2025 (1995)CrossRefADSGoogle Scholar
  32. 32.
    M.A. Kamal, A. Pal, V.A. Raghunathan, M. Rao, Theory of the asymmetric ripple phase in achiral lipid membranes. Europhys. Lett. 95(4), 48004 (2011)Google Scholar
  33. 33.
    K.A. Riske, R.P. Barroso, C.C. Vequi-Suplicy, R. Germano, V.B. Henriques, M.T. Lamy, Lipid bilayer pre-transition as the beginning of the melting process. Biochimica et Biophysica Acta (BBA) – Biomembranes 1788(5), 954–963 (2009)Google Scholar
  34. 34.
    S.A. Tristram-Nagle, Preparation of oriented, fully hydrated lipid samples for structure determination using X-ray scattering. Methods Mol. Biol. 400, 63–75 (2007)CrossRefGoogle Scholar
  35. 35.
  36. 36.
    Y. Liu, New method to obtain strcuture of biomembranes using diffuse X-ray scattering: application to fluid phase DOPC lipid bilayers. PhD thesis, Carnegie Mellon University (2003)Google Scholar
  37. 37.
    B.E. Warren, X-ray Diffraction (Courier Dover Publications, New York, 1969)Google Scholar
  38. 38.
    S. Guler, D.D. Ghosh, J. Pan, J.C. Mathai, M.L. Zeidel, J.F. Nagle, S. Tristram-Nagle, Effects of ether vs. ester linkage on lipid bilayer structure and water permeability. Chem. Phys. Lipids 160(1), 33–44 (2009)Google Scholar
  39. 39.
  40. 40.
    M.C. Wiener, R.M. Suter, J.F. Nagle, Structure of the fully hydrated gel phase of dipalmitoylphosphatidylcholine. Biophys. J. 55(2), 315–325 (1989)CrossRefADSGoogle Scholar
  41. 41.
    C. Worthington, G. King, T. McIntosh, Direct structure determination of multilayered membrane-type systems which contain fluid layers. Biophys. J. 13(5), 480–494 (1973)CrossRefGoogle Scholar
  42. 42.
    S. Tristram-Nagle, Y. Liu, J. Legleiter, J.F. Nagle, Structure of gel phase DMPC determined by X-ray diffraction. Biophys. J. 83(6), 3324–3335 (2002)CrossRefADSGoogle Scholar
  43. 43.
    G. Pabst, H. Amenitsch, D.P. Kharakoz, P. Laggner, M. Rappolt, Structure and fluctuations of phosphatidylcholines in the vicinity of the main phase transition. Phys. Rev. E 70(2), 021908 (2004)Google Scholar
  44. 44.
    T.T. Mills, G.E. Toombes, S. Tristram-Nagle, D.-M. Smilgies, G.W. Feigenson, J.F. Nagle, Order parameters and areas in fluid-phase oriented lipid membranes using wide angle X-ray scattering. Biophys. J. 95(2), 669–681 (2008)CrossRefGoogle Scholar
  45. 45.
    G.S. Smith, E.B. Sirota, C.R. Safinya, N.A. Clark, Structure of the \(L_{\beta ^{{\prime}}}\) phases in a hydrated phosphatidylcholine multimembrane. Phys. Rev. Lett. 60, 813–816 (1988)CrossRefADSGoogle Scholar
  46. 46.
    G.H. Vineyard, Grazing-incidence diffraction and the distorted-wave approximation for the study of surfaces. Phys. Rev. B 26(8), 4146 (1982)Google Scholar
  47. 47.
    C.E. Miller, J. Majewski, E.B. Watkins, D.J. Mulder, T. Gog, T.L. Kuhl, Probing the local order of single phospholipid membranes using grazing incidence X-ray diffraction. Phys. Rev. Lett. 100(5), 058103 (2008)Google Scholar
  48. 48.
    K. Akabori, J.F. Nagle, Comparing lipid membranes in different environments. ACS Nano 8(4), 3123–3127 (2014)CrossRefGoogle Scholar
  49. 49.
    S. Tristram-Nagle, R. Zhang, R.M. Suter, C.R. Worthington, W.J. Sun, J.F. Nagle, Measurement of chain tilt angle in fully hydrated bilayers of gel phase lecithins. Biophys. J. 64(4), 1097–1109 (1993)CrossRefGoogle Scholar
  50. 50.
    W.J. Sun, R.M. Suter, M.A. Knewtson, C.R. Worthington, S. Tristram-Nagle, R. Zhang, J.F. Nagle, Order and disorder in fully hydrated unoriented bilayers of gel-phase dipalmitoylphosphatidylcholine. Phys. Rev. E 49, 4665–4676 (1994)CrossRefADSGoogle Scholar
  51. 51.
    N. Chu, N. Kučerka, Y. Liu, S. Tristram-Nagle, J.F. Nagle, Anomalous swelling of lipid bilayer stacks is caused by softening of the bending modulus. Phys. Rev. E 71, 041904 (2005)CrossRefADSGoogle Scholar
  52. 52.
    H. Träuble, D.H. Haynes, The volume change in lipid bilayer lamellae at the crystalline-liquid crystalline phase transition. Chem. Phys. Lipids 7(4), 324–335 (1971)CrossRefGoogle Scholar
  53. 53.
    J.F. Nagle, Theory of the main lipid bilayer phase-transition. Annu. Rev. Phys. Chem. 31, 157–195 (1980)CrossRefADSGoogle Scholar
  54. 54.
    E.B. Watkins, C.E. Miller, W.-P. Liao, T.L. Kuhl, Equilibrium or quenched: fundamental differences between lipid monolayers, supported bilayers, and membranes. ACS Nano 8(4), 3181–3191 (2014)CrossRefGoogle Scholar
  55. 55.
    N. Kučerka, Y. Liu, N. Chu, H.I. Petrache, S. Tristram-Nagle, J.F. Nagle, Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using X-ray scattering from oriented multilamellar arrays and from unilamellar vesicles. Biophys. J. 88(4), 2626–2637 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Kiyotaka Akabori
    • 1
  1. 1.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations