Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 276 Accesses

Abstract

This chapter reports the effect on lipid bilayers of Tat, the transactivator of transcription, which is an important protein for HIV-1 infection. Synergistic use of low-angle X-ray scattering (LAXS) and atomistic molecular dynamic simulations (MD) revealed Tat peptides binding to lipid headgroups. This binding induced the local lipid phosphate groups to move closer to the center of the bilayer. The position of the positively charged guanidinium components of the arginines was also indicated. A single lipid component sample and samples consisting of mixtures of different lipids were studied. Generally, the Tat peptide decreased the bilayer bending modulus and increased the area/lipid. Although a mechanism for translation remains obscure, this study suggests that the peptide/lipid interaction makes the Tat peptide poised to translocate from the headgroup region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. R. Fischer, M. Fotin-Mleczek, H. Hufnagel, R. Brock, Break on through to the other side: biophysics and cell biology shed light on cell-penetrating peptides. ChemBioChem 6(12), 2126–2142 (2005)

    Article  Google Scholar 

  2. A. Joliot, A. Prochiantz, Transduction peptides: from technology to physiology. Nat. Cell Biol. 6(3), 189–196 (2004)

    Article  Google Scholar 

  3. M. Lindgren, M. Hällbrink, A. Prochiantz, U. Langel, Cell-penetrating peptides. Trends Pharmacol. Sci. 21(3), 99–103 (2000)

    Article  Google Scholar 

  4. A.D. Frankel, C.O. Pabo, Cellular uptake of the Tat protein from human immunodeficiency virus. Cell 55(6), 1189–1193 (1988)

    Article  Google Scholar 

  5. M. Green, P.M. Loewenstein, Autonomous functional domains of chemically synthesized human immunodeficiency virus Tat trans-activator protein. Cell 55(6), 1179–1188 (1988)

    Article  Google Scholar 

  6. E. Vives, P. Brodin, B. Lebleu, HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biolog. Chem. 272(25), 16010–16017 (1997)

    Article  Google Scholar 

  7. G. Ter-Avetisyan, G. Tünnemann, D. Nowak, M. Nitschke, A. Herrmann, M. Drab, M.C. Cardoso, Cell entry of arginine-rich peptides is independent of endocytosis. J. Biolog. Chem. 284(6), 3370–3378 (2009)

    Article  Google Scholar 

  8. F. Duchardt, M. Fotin-Mleczek, H. Schwarz, R. Fischer, R. Brock, A comprehensive model for the cellular uptake of cationic cell-penetrating peptides. Traffic 8(7), 848–866 (2007)

    Article  Google Scholar 

  9. G. Tünnemann, R.M. Martin, S. Haupt, C. Patsch, F. Edenhofer, M.C. Cardoso, Cargo-dependent mode of uptake and bioavailability of Tat-containing proteins and peptides in living cells. FASEB J. 20(11), 1775–1784 (2006)

    Article  Google Scholar 

  10. A. Ziegler, P. Nervi, M. Dürrenberger, J. Seelig, The cationic cell-penetrating peptide CPPTat derived from the HIV-1 protein Tat is rapidly transported into living fibroblasts: optical, biophysical, and metabolic evidence. Biochemistry 44(1), 138–148 (2005). PMID: 15628854.

    Article  Google Scholar 

  11. J.S. Wadia, R.V. Stan, S.F. Dowdy, Transducible Tat-HA fusogenic peptide enhances escape of Tat-fusion proteins after lipid raft macropinocytosis. Nat. Med. 10(3), 310–315 (2004)

    Article  Google Scholar 

  12. I.M. Kaplan, J.S. Wadia, S.F. Dowdy, Cationic Tat peptide transduction domain enters cells by macropinocytosis. J. Control. Release 102(1), 247–253 (2005)

    Article  Google Scholar 

  13. D.A. Mann, A.D. Frankel, Endocytosis and targeting of exogenous HIV-1 Tat protein. EMBO J. 10(7), 1733–420 (1991)

    Google Scholar 

  14. J.P. Richard, K. Melikov, H. Brooks, P. Prevot, B. Lebleu, L.V. Chernomordik, Cellular uptake of unconjugated Tat peptide involves clathrin-dependent endocytosis and heparan sulfate receptors. J. Biol. Chem. 280(15), 15300–15306 (2005)

    Article  Google Scholar 

  15. S.W. Jones, R. Christison, K. Bundell, C.J. Voyce, S. Brockbank, P. Newham, M.A. Lindsay, Characterisation of cell-penetrating peptide-mediated peptide delivery. Br. J. Pharmacol. 145(8), 1093–1102 (2005)

    Article  Google Scholar 

  16. A. Vendeville, F. Rayne, A. Bonhoure, N. Bettache, P. Montcourrier, B. Beaumelle, HIV-1 Tat enters T cells using coated pits before translocating from acidified endosomes and eliciting biological responses. Mol. Biol. Cell 15(5), 2347–2360 (2004)

    Article  Google Scholar 

  17. C. Foerg, U. Ziegler, J. Fernandez-Carneado, E. Giralt, R. Rennert, A.G. Beck-Sickinger, H.P. Merkle, Decoding the entry of two novel cell-penetrating peptides in HeLa cells: lipid raft-mediated endocytosis and endosomal escape. Biochemistry 44(1), 72–81 (2005)

    Article  Google Scholar 

  18. A. Fittipaldi, M. Giacca, Transcellular protein transduction using the Tat protein of HIV-1. Adv. Drug Deliv. Rev. 57(4), 597–608 (2005)

    Article  Google Scholar 

  19. Y. Liu, M. Jones, C.M. Hingtgen, G. Bu, N. Laribee, R.E. Tanzi, R.D. Moir, A. Nath, J.J. He, Uptake of HIV-1 Tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat. Med. 6(12), 1380–1387 (2000)

    Article  Google Scholar 

  20. V.P. Torchilin, R. Rammohan, V. Weissig, T.S. Levchenko, Tat peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc. Natl. Acad. Sci. 98(15), 8786–8791 (2001)

    Article  ADS  Google Scholar 

  21. V.P. Torchilin, T.S. Levchenko, R. Rammohan, N. Volodina, B. Papahadjopoulos-Sternberg, G.G. D’Souza, Cell transfection in vitro and in vivo with nontoxic Tat peptide-liposome–DNA complexes. Proc. Natl. Acad. Sci. 100(4), 1972–1977 (2003)

    Article  ADS  Google Scholar 

  22. C. Rudolph, C. Plank, J. Lausier, U. Schillinger, R.H. Müller, J. Rosenecker, Oligomers of the arginine-rich motif of the HIV-1 Tat protein are capable of transferring plasmid DNA into cells. J. Biol. Chem. 278(13), 11411–11418 (2003)

    Article  Google Scholar 

  23. A. Chauhan, A. Tikoo, A.K. Kapur, M. Singh, The taming of the cell penetrating domain of the HIV Tat: myths and realities. J. Control. Release 117(2), 148–162 (2007)

    Article  Google Scholar 

  24. J. Sabatier, E. Vives, K. Mabrouk, A. Benjouad, H. Rochat, A. Duval, B. Hue, E. Bahraoui, Evidence for neurotoxic activity of Tat from human immunodeficiency virus type 1. J. Virol. 65(2), 961–967 (1991)

    Google Scholar 

  25. A. Mishra, V.D. Gordon, L.H. Yang, R. Coridan, G.C.L. Wong, HIV Tat forms pores in membranes by inducing saddle-splay curvature: potential role of bidentate hydrogen bonding. Angew. Chem.-Int. Ed. 47(16), 2986–2989 (2008)

    Article  Google Scholar 

  26. S.T. Yang, E. Zaitseva, L.V. Chernomordik, K. Melikov, Cell-penetrating peptide induces leaky fusion of liposomes containing late endosome-specific anionic lipid. Biophys. J. 99(8), 2525–2533 (2010)

    Article  ADS  Google Scholar 

  27. P.E.G. Thoren, D. Persson, E.K. Esbjorner, M. Goksor, P. Lincoln, B. Norden, Membrane binding and translocation of cell-penetrating peptides. Biochemistry 43(12), 3471–3489 (2004)

    Article  Google Scholar 

  28. S. Krämer, H. Wunderli-Allenspach, No entry for Tat (44–57) into liposomes and intact mdck cells: novel approach to study membrane permeation of cell-penetrating peptides. Biochim. Biophys. Acta (BBA)-Biomembr. 1609(2), 161–169 (2003)

    Google Scholar 

  29. C. Ciobanasu, J.P. Siebrasse, U. Kubitscheck, Cell-penetrating HIV-1 Tat peptides can generate pores in model membranes. Biophys. J. 99(1), 153–62 (2010)

    Article  ADS  Google Scholar 

  30. P.A. Gurnev, S.-T. Yang, K.C. Melikov, L.V. Chernomordik, S.M. Bezrukov, Cationic cell-penetrating peptide binds to planar lipid bilayers containing negatively charged lipids but does not induce conductive pores. Biophys. J. 104(9), 1933–1939 (2013)

    Article  ADS  Google Scholar 

  31. H.D. Herce, A.E. Garcia, J. Litt, R.S. Kane, P. Martin, N. Enrique, A. Rebolledo, V. Milesi, Arginine-rich peptides destabilize the plasma membrane, consistent with a pore formation translocation mechanism of cell-penetrating peptides. Biophys. J. 97(7), 1917–1925 (2009)

    Article  ADS  Google Scholar 

  32. Y.C. Su, A.J. Waring, P. Ruchala, M. Hong, Membrane-bound dynamic structure of an arginine-rich cell-penetrating peptide, the protein transduction domain of HIV Tat, from solid-state NMR. Biochemistry 49(29), 6009–6020 (2010)

    Article  Google Scholar 

  33. S. Shojania, J.D. O’Neil, HIV-1 Tat is a natively unfolded protein – the solution conformation and dynamics of reduced HIV-1 Tat-(1–72) by NMR spectroscopy. J. Biol. Chem. 281(13), 8347–8356 (2006)

    Article  Google Scholar 

  34. P. Bayer, M. Kraft, A. Ejchart, M. Westendorp, R. Frank, P. Rosch, Structural studies of HIV-1 Tat protein. J. Mol. Biol. 247(4), 529–535 (1995)

    Google Scholar 

  35. H.D. Herce, A.E. Garcia, Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 Tat peptide across lipid membranes. Proc. Natl. Acad. Sci. 104(52), 20805–20810 (2007)

    Article  ADS  Google Scholar 

  36. S. Yesylevskyy, S.J. Marrink, A.E. Mark, Alternative mechanisms for the interaction of the cell-penetrating peptides penetratin and the Tat peptide with lipid bilayers. Biophys. J. 97(1), 40–49 (2009)

    Article  ADS  Google Scholar 

  37. E.D. Jarasch, C.E. Reilly, P. Comes, J. Kartenbeck, W.W. Franke, Isolation and characterization of nuclear membranes from calf and rat thymus. Hoppe Seylers Z. Physiol. Chem. 354(8), 974–86 (1973)

    Article  Google Scholar 

  38. S.A. Tristram-Nagle, Preparation of oriented, fully hydrated lipid samples for structure determination using X-ray scattering. Methods Mol. Biol. 400, 63–75 (2007)

    Article  Google Scholar 

  39. N. Kučerka, Y. Liu, N. Chu, H.I. Petrache, S. Tristram-Nagle, J.F. Nagle, Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using X-ray scattering from oriented multilamellar arrays and from unilamellar vesicles. Biophys. J. 88(4), 2626–2637 (2005)

    Article  Google Scholar 

  40. S. Barna, M. Tate, S. Gruner, E. Eikenberry, Calibration procedures for charge-coupled device X-ray detectors. Rev. Sci. Instrum. 70(7), 2927–2934 (1999)

    Article  ADS  Google Scholar 

  41. Y. Lyatskaya, Y.F. Liu, S. Tristram-Nagle, J. Katsaras, J.F. Nagle, Method for obtaining structure and interactions from oriented lipid bilayers. Phys. Rev. E 63(1), 0119071–0119079 (2001)

    Google Scholar 

  42. Y.F. Liu, J.F. Nagle, Diffuse scattering provides material parameters and electron density profiles of biomembranes. Phys. Rev. E 69(4), 040901–040904(R) (2004)

    Google Scholar 

  43. Y. Liu, New method to obtain strcuture of biomembranes using diffuse X-ray scattering: application to fluid phase DOPC lipid bilayers. PhD thesis, Carnegie Mellon University, 2003

    Google Scholar 

  44. G. King, S. White, Determining bilayer hydrocarbon thickness from neutron diffraction measurements using strip-function models. Biophys. J. 49(5), 1047–1054 (1986)

    Article  ADS  Google Scholar 

  45. F. Heinrich, M. Lösche, Zooming in on disordered systems: Neutron reflection studies of proteins associated with fluid membranes. Biochim. Biophys. Acta (BBA) – Biomembr. 1838(9), 2341–2349 (2014). Interfacially active peptides and proteins.

    Google Scholar 

  46. P. Shekhar, H. Nanda, M. Lösche, F. Heinrich, Continuous distribution model for the investigation of complex molecular architectures near interfaces with scattering techniques. J. Appl. Phys. 110(10), 102216 (2011)

    Google Scholar 

  47. T. Mitsui, X-ray diffraction studies of membranes. Adv. Biophys. 10, 97–135 (1978)

    Google Scholar 

  48. M.C. Wiener, R.M. Suter, J.F. Nagle, Structure of the fully hydrated gel phase of dipalmitoylphosphatidylcholine. Biophys. J. 55(2), 315–325 (1989)

    Article  ADS  Google Scholar 

  49. J.B. Klauda, N. Kučerka, B.R. Brooks, R.W. Pastor, J.F. Nagle, Simulation-based methods for interpreting x-ray data from lipid bilayers. Biophys. J. 90(8), 2796–2807 (2006)

    Article  ADS  Google Scholar 

  50. N. Kučerka, J.F. Nagle, J.N. Sachs, S.E. Feller, J. Pencer, A. Jackson, J. Katsaras, Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data. Biophys. J. 95(5), 2356–2367 (2008)

    Article  ADS  Google Scholar 

  51. S. Tristram-Nagle, Y. Liu, J. Legleiter, J.F. Nagle, Structure of gel phase DMPC determined by X-ray diffraction. Biophys. J. 83(6), 3324–3335 (2002)

    Article  ADS  Google Scholar 

  52. A.R. Braun, J.N. Sachs, J.F. Nagle, Comparing simulations of lipid bilayers to scattering data: the gromos 43A1-S3 force field. J. Phys. Chem. B 117(17), 5065–5072 (2013)

    Article  Google Scholar 

  53. http://lcgapp.cern.ch/project/cls/work-packages/mathlibs/minuit/index.html

  54. B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, Gromacs 4: algorithms for highly efficient, load-balanced, scalable molecular simulation. J. Chem. Theory Comput. 4(3), 435–447 (2008)

    Article  Google Scholar 

  55. J.P.M. Jambeck, A.P. Lyubartsev, Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J. Phys. Chem. B 116(10), 3164–3179 (2012)

    Article  Google Scholar 

  56. J.P.M. Jambeck, A.P. Lyubartsev, An extension and further validation of an all-atomistic force field for biological membranes. J. Chem. Theory Comput. 8(8), 2938–2948 (2012)

    Article  Google Scholar 

  57. V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, C. Simmerling, Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins Struct. Funct. Bioinform. 65(3), 712–725 (2006)

    Article  Google Scholar 

  58. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79(2), 926–935 (1983)

    Article  ADS  Google Scholar 

  59. N. Kučerka, J. Katsaras, J. Nagle, Comparing membrane simulations to scattering experiments: Introducing the SIMtoEXP software. J. Membr. Biol. 235(1), 43–50 (2010)

    Article  Google Scholar 

  60. S. Miyamoto, P.A. Kollman, Settle: an analytical version of the shake and rattle algorithm for rigid water models. J. Comput. Chem. 13(8), 952–962 (1992)

    Article  Google Scholar 

  61. B. Hess, H. Bekker, H.J.C. Berendsen, J.G. E.M. Fraaije, Lincs: A linear constraint solver for molecular simulations. J. Comput. Chem. 18(12), 1463–1472 (1997)

    Article  Google Scholar 

  62. T. Darden, D. York, L. Pedersen, Particle mesh Ewald: an N-log(N) method for Ewald sums in large systems. J. Chem. Phys. 98(12), 10089–10092 (1993)

    Article  ADS  Google Scholar 

  63. G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through velocity rescaling. J. Chem. Phys. 126(1), 014101–420 (2007)

    Article  ADS  Google Scholar 

  64. M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52(12), 7182–7190 (1981)

    Article  ADS  Google Scholar 

  65. N. Kučerka, S. Tristram-Nagle, J.F. Nagle, Closer look at structure of fully hydrated fluid phase DPPC bilayers. Biophysical Journal 90(11), L83–L85 (2006)

    Article  ADS  Google Scholar 

  66. N. Kučerka, S. Tristram-Nagle, J.F. Nagle, Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains. J. Membr. Biol. 208(3), 193–202 (2005)

    Article  Google Scholar 

  67. H. Petrache, S. Feller, J. Nagle, Determination of component volumes of lipid bilayers from simulations. Biophys. J. 72(5), 2237–2242 (1997)

    Article  ADS  Google Scholar 

  68. S. Tristram-Nagle, C.-P. Yang, J.F. Nagle, Thermodynamic studies of purple membrane. Biochim. Biophys. Acta (BBA)-Biomembr. 854(1), 58–66 (1986)

    Google Scholar 

  69. http://www.basic.northwestern.edu/biotools/proteincalc.html

  70. A.C.V. Johansson, E. Lindahl, The role of lipid composition for insertion and stabilization of amino acids in membranes. J. Chem. Phys. 130(18), (2009)

    Google Scholar 

  71. S. Tristram-Nagle, J.F. Nagle, HIV-1 fusion peptide decreases bending energy and promotes curved fusion intermediates. Biophys. J. 93(6), 2048–2055 (2007)

    Article  ADS  Google Scholar 

  72. M. Vazdar, E. Wernersson, M. Khabiri, L. Cwiklik, P. Jurkiewicz, M. Hof, E. Mann, S. Kolusheva, R. Jelinek, P. Jungwirth, Aggregation of oligoarginines at phospholipid membranes: molecular dynamics simulations, time-dependent fluorescence shift, and biomimetic colorimetric assays. J. Phys. Chem. B 117(39), 11530–11540 (2013)

    Article  Google Scholar 

  73. Z. Wu, Q. Cui, A. Yethiraj, Why do arginine and lysine organize lipids differently? insights from coarse-grained and atomistic simulations. J. Phys. Chem. B 117(40), 12145–12156 (2013)

    Article  Google Scholar 

  74. L.B. Li, I. Vorobyov, T.W. Allen, Potential of mean force and pk(a) profile calculation for a lipid membrane-exposed arginine side chain. J. Phys. Chem. B 112(32), 9574–9587 (2008)

    Article  Google Scholar 

  75. I. Vorobyov, L.B. Li, T.W. Allen, Assessing atomistic and coarse-grained force fields for protein-lipid interactions: the formidable challenge of an ionizable side chain in a membrane. J. Phys. Chem. B 112(32), 9588–9602 (2008)

    Article  Google Scholar 

  76. J.L. MacCallum, W.F.D. Bennett, D.P. Tieleman, Distribution of amino acids in a lipid bilayer from computer simulations. Biophys. J. 94(9), 3393–3404 (2008)

    Article  ADS  Google Scholar 

  77. E.V. Schow, J.A. Freites, P. Cheng, A. Bernsel, G. von Heijne, S.H. White, D.J. Tobias, Arginine in membranes: the connection between molecular dynamics simulations and translocon-mediated insertion experiments. J. Membr. Biol. 239(1–2), 35–48 (2011)

    Article  Google Scholar 

  78. W.C. Wimley, T.P. Creamer, S.H. White, Solvation energies of amino acid side chains and backbone in a family of host-guest pentapeptides. Biochemistry 35(16), 5109–5124 (1996)

    Article  Google Scholar 

  79. W.C. Wimley, S.H. White, Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat. Struct. Biol. 3(10), 842–848 (1996)

    Article  Google Scholar 

  80. B. Roux, Lonely arginine seeks friendly environment. J. Gen. Physiol. 130(2), 233–236 (2007)

    Article  Google Scholar 

  81. W. Kabsch, C. Sander, Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12), 2577–637 (1983)

    Article  Google Scholar 

  82. D. Choi, J.H. Moon, H. Kim, B.J. Sung, M.W. Kim, G.Y. Tae, S.K. Satija, B. Akgun, C.J. Yu, H.W. Lee, D.R. Lee, J.M. Henderson, J.W. Kwong, K.L. Lam, K.Y.C. Lee, K. Shin, Insertion mechanism of cell-penetrating peptides into supported phospholipid membranes revealed by X-ray and neutron reflection. Soft Matter 8(32), 8294–8297 (2012)

    Article  ADS  Google Scholar 

  83. A. Ziegler, X.L. Blatter, A. Seelig, J. Seelig, Protein transduction domains of HIV-1 and SIV Tat interact with charged lipid vesicles. binding mechanism and thermodynamic analysis. Biochemistry 42(30), 9185–94 (2003)

    Google Scholar 

  84. K. Huang, A.E. Garcia, Free energy of translocating an arginine-rich cell-penetrating peptide across a lipid bilayer suggests pore formation. Biophys. J. 104(2), 412–420 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Akabori, K. (2015). Structural and Material Perturbations of Lipid Bilayers Due to HIV-1 Tat Peptide. In: Structure Determination of HIV-1 Tat/Fluid Phase Membranes and DMPC Ripple Phase Using X-Ray Scattering. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-22210-3_2

Download citation

Publish with us

Policies and ethics