Advertisement

Introduction

  • Kiyotaka Akabori
Chapter
  • 197 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This thesis has two focuses, both in the area of biomembranes. One focus is on the interaction of a biomedically important Tat peptide with membranes. The other is on a fundamental problem regarding the enigmatic structure of a pure lipid bilayer. Section 1.1 introduces lipid molecules that constitute biomembranes and three thermodynamic phases displayed by lipids pertinent to this thesis. The Tat peptide and its biomedical importance are introduced in Sect 1.2, followed by a brief overview of the ripple phase in Sect. 1.3.

Keywords

Membrane Curvature Full Hydration Ripple Phase Biomedical Importance Lipid Hydrocarbon Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Bibliography

  1. 1.
    J.F. Nagle, S. Tristram-Nagle, Structure of lipid bilayers. Biochim. Biophys. Acta (BBA) – Rev. Biomembr. 1469(3), 159–195 (2000)Google Scholar
  2. 2.
    P.F. Fahey, W.W. Webb, Lateral diffusion in phospholipid bilayer membranes and multilamellar liquid crystals. Biochemistry 17(15), 3046–3053 (1978)CrossRefGoogle Scholar
  3. 3.
    G.S. Smith, E.B. Sirota, C.R. Safinya, N.A. Clark, Structure of the L β phases in a hydrated phosphatidylcholine multimembrane. Phys. Rev. Lett. 60, 813–816 (1988)CrossRefADSGoogle Scholar
  4. 4.
    A. Tardieu, V. Luzzati, F. Reman, Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J. Mol. Biol. 75(4), 711–733 (1973)CrossRefGoogle Scholar
  5. 5.
    S. Tristram-Nagle, R. Zhang, R.M. Suter, C.R. Worthington, W.J. Sun, J.F. Nagle, Measurement of chain tilt angle in fully hydrated bilayers of gel phase lecithins. Biophys. J. 64(4), 1097–1109 (1993)CrossRefGoogle Scholar
  6. 6.
    S. Tristram-Nagle, Y. Liu, J. Legleiter, J.F. Nagle, Structure of gel phase DMPC determined by X-ray diffraction. Biophys. J. 83(6), 3324–3335 (2002)CrossRefADSGoogle Scholar
  7. 7.
    L.V. Chernomordik, M.M. Kozlov, Protein-lipid interplay in fusion and fission of biological membranes. Annu. Rev. Biochem. 72(1), 175–207 (2003)CrossRefGoogle Scholar
  8. 8.
    W. Dowhan, Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu. Rev. Biochem. 66(1), 199–232 (1997)CrossRefGoogle Scholar
  9. 9.
    Y.N. Vaishnav, F. Wong-Staal, The biochemistry of AIDS. Annu. Rev. Biochem. 60(1), 577–630 (1991)CrossRefGoogle Scholar
  10. 10.
    T. Raha, S.G. Cheng, M.R. Green, HIV-1 Tat stimulates transcription complex assembly through recruitment of TBP in the absence of TAFs. PLoS Biol. 3(2), e44 (2005)Google Scholar
  11. 11.
    D. Macías, R. Oya, L. Saniger, F. Martín, F. Luque, A lentiviral vector that activates latent human immunodeficiency virus-1 proviruses by the overexpression of Tat and that kills the infected cells. Hum. Gene Therapy 20(11), 1259–1268 (2009)CrossRefGoogle Scholar
  12. 12.
    S. Ruben, A. Perkins, R. Purcell, K. Joung, R. Sia, R. Burghoff, W. Haseltine, C. Rosen, Structural and functional characterization of human immunodeficiency virus Tat protein. J. Virol. 63(1), 1–8 (1989)Google Scholar
  13. 13.
    J. Hauber, A. Perkins, E.P. Heimer, B.R. Cullen, Trans-activation of human immunodeficiency virus gene expression is mediated by nuclear events. Proc. Natl. Acad. Sci. 84(18), 6364–6368 (1987)CrossRefADSGoogle Scholar
  14. 14.
    S. Futaki, T. Suzuki, W. Ohashi, T. Yagami, S. Tanaka, K. Ueda, Y. Sugiura, Arginine-rich peptides an abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem. 276(8), 5836–5840 (2001)CrossRefGoogle Scholar
  15. 15.
    M. Grabe, H. Lecar, Y.N. Jan, L.Y. Jan, A quantitative assessment of models for voltage-dependent gating of ion channels. Proc. Natl. Acad. Sci. 101(51), 17640–17645 (2004)CrossRefADSGoogle Scholar
  16. 16.
    H.D. Herce, A.E. Garcia, Molecular dynamics simulations suggest a mechanism for translocation of the HIV-1 Tat peptide across lipid membranes. Proc. Natl. Acad. Sci. 104(52), 20805–20810 (2007)CrossRefADSGoogle Scholar
  17. 17.
    E.O. Freed, HIV-1 gag proteins: diverse functions in the virus life cycle. Virology 251(1), 1–15 (1998)CrossRefGoogle Scholar
  18. 18.
    D.C. Wack, W.W. Webb, Synchrotron X-ray study of the modulated lamellar phase \(P_{\beta ^{{\prime}}}\) in the lecithin-water system. Phys. Rev. A 40, 2712–2730 (1989)CrossRefADSGoogle Scholar
  19. 19.
    S. Doniach, A thermodynamic model for the monoclinic (ripple) phase of hydrated phospholipid bilayers. J. Chem. Phys. 70(10), 4587–4596 (1979)CrossRefADSGoogle Scholar
  20. 20.
    M. Marder, H.L. Frisch, J.S. Langer, H.M. McConnell, Theory of the intermediate rippled phase of phospholipid bilayers. Proc. Natl. Acad. Sci. 81(20), 6559–6561 (1984)CrossRefADSGoogle Scholar
  21. 21.
    M.H. Hawton, W.J. Keeler, van der Waals energy of lecithins in the ripple phase. Phys. Rev. A 33(5), 3333 (1986)Google Scholar
  22. 22.
    J.M. Carlson, J.P. Sethna, Theory of the ripple phase in hydrated phospholipid bilayers. Phys. Rev. A 36(7), 3359 (1987)Google Scholar
  23. 23.
    R.E. Goldstein, S. Leibler, Model for lamellar phases of interacting lipid membranes. Phys. Rev. Lett. 61(19), 2213 (1988)Google Scholar
  24. 24.
    W.S. McCullough, H.L. Scott, Statistical-mechanical theory of the ripple phase of lipid bilayers. Phys. Rev. Lett. 65, 931–934 (1990)CrossRefADSGoogle Scholar
  25. 25.
    K. Honda, H. Kimura, Theory on formation of the ripple phase in bilayer membranes. J. Phys. Soc. Jpn. 60(4), 1212–1215 (1991)CrossRefADSGoogle Scholar
  26. 26.
    T.C. Lubensky, F.C. MacKintosh, Theory of “ripple” phases of lipid bilayers. Phys. Rev. Lett. 71(10), 1565 (1993)Google Scholar
  27. 27.
    K. Sengupta, V. Raghunathan, Y. Hatwalne, Role of tilt order in the asymmetric ripple phase of phospholipid bilayers. Phys. Rev. Lett. 87(5), 055705_1–055705_4 (2001)Google Scholar
  28. 28.
    M.A. Kamal, A. Pal, V.A. Raghunathan, M. Rao, Theory of the asymmetric ripple phase in achiral lipid membranes. Europhys. Lett. 95(4), 48004 (2011)Google Scholar
  29. 29.
    A.H. de Vries, S. Yefimov, A.E. Mark, S.J. Marrink, Molecular structure of the lecithin ripple phase. Proc. Natl. Acad. Sci. 102(15), 5392–5396 (2005)CrossRefADSGoogle Scholar
  30. 30.
    O. Lenz, F. Schmid, Structure of symmetric and asymmetric “ripple” phases in lipid bilayers. Phys. Rev. Lett. 98, 058104 (2007)CrossRefADSGoogle Scholar
  31. 31.
    H.L. Scott, Monte Carlo studies of a general model for lipid bilayer condensed phases. J. Chem. Phys. 80(5), 2197–2202 (1984)CrossRefADSGoogle Scholar
  32. 32.
    A. Debnath, K.G. Ayappa, V. Kumaran, P.K. Maiti, The influence of bilayer composition on the gel to liquid crystalline transition. J. Phys. Chem. B 113(31), 10660–10668 (2009). PMID: 19594148CrossRefGoogle Scholar
  33. 33.
    M.J. Janiak, D.M. Small, G.G. Shipley, Nature of the thermal pretransition of synthetic phospholipids: dimyristoyl- and dipalmitoyllecithin. Biochemistry 15(21), 4575–4580 (1976)CrossRefGoogle Scholar
  34. 34.
    B.R. Copeland, H.M. McConnell, The rippled structure in bilayer membranes of phosphatidylcholine and binary mixtures of phosphatidylcholine and cholesterol. Biochim. Biophys. Acta (BBA) – Biomembr. 599(1), 95–109 (1980)Google Scholar
  35. 35.
    D. Ruppel, E. Sackmann, On defects in different phases of two-dimensional lipid bilayers. J. Phys. 44(9) 1025–1034 (1983)CrossRefGoogle Scholar
  36. 36.
    J. Zasadzinski, M. Schneider, Ripple wavelength, amplitude, and configuration in lyotropic liquid crystals as a function of effective headgroup size. J. Phys. 48(11), 2001–2011 (1987)CrossRefGoogle Scholar
  37. 37.
    W.J. Sun, S. Tristram-Nagle, R.M. Suter, J.F. Nagle, Structure of the ripple phase in lecithin bilayers. Proc. Natl. Acad. Sci. 93(14), 7008–7012 (1996)CrossRefADSGoogle Scholar
  38. 38.
    J. Katsaras, S. Tristram-Nagle, Y. Liu, R. Headrick, E. Fontes, P. Mason, J.F. Nagle, Clarification of the ripple phase of lecithin bilayers using fully hydrated, aligned samples. Phys. Rev. E 61(5), 5668 (2000)Google Scholar
  39. 39.
    K. Sengupta, V.A. Raghunathan, J. Katsaras, Structure of the ripple phase of phospholipid multibilayers. Phys. Rev. E 68, 031710 (2003)CrossRefADSGoogle Scholar
  40. 40.
    P.C. Mason, B.D. Gaulin, R.M. Epand, G.D. Wignall, J.S. Lin, Small angle neutron scattering and calorimetric studies of large unilamellar vesicles of the phospholipid dipalmitoylphosphatidylcholine. Phys. Rev. E 59(3), 3361 (1999)Google Scholar
  41. 41.
    R.A. Parente, B.R. Lentz, Phase behavior of large unilamellar vesicles composed of synthetic phospholipids. Biochemistry 23(11), 2353–2362 (1984)CrossRefGoogle Scholar
  42. 42.
    T.J. McIntosh, Differences in hydrocarbon chain tilt between hydrated phosphatidylethanolamine and phosphatidylcholine bilayers. a molecular packing model. Biophys. J. 29(2), 237–245 (1980)Google Scholar
  43. 43.
    J. Nagle, Theory of lipid monolayer and bilayer phase transitions: effect of headgroup interactions. J. Membr. Biol. 27(1), 233–250 (1976)CrossRefGoogle Scholar
  44. 44.
    G. Cevc, Polymorphism of the bilayer membranes in the ordered phase and the molecular origin of the lipid pretransition and rippled lamellae. Biochim. Biophys. Acta (BBA)-Biomembr. 1062(1), 59–69 (1991)Google Scholar
  45. 45.
    R. Wittebort, C. Schmidt, R. Griffin, Solid-state carbon-13 nuclear magnetic resonance of the lecithin gel to liquid-crystalline phase transition. Biochemistry 20(14), 4223–4228 (1981)CrossRefGoogle Scholar
  46. 46.
    M.B. Schneider, W.K. Chan, W.W. Webb, Fast diffusion along defects and corrugations in phospholipid \(P_{\beta ^{{\prime}}}\), liquid crystals. Biophys. J. 43(2), 157–165 (1983)CrossRefGoogle Scholar
  47. 47.
    D. Marsh, Molecular motion in phospholipid bilayers in the gel phase: long axis rotation. Biochemistry 19(8), 1632–1637 (1980)CrossRefGoogle Scholar
  48. 48.
    B.A. Cunningham, A.-D. Brown, D.H. Wolfe, W.P. Williams, A. Brain, Ripple phase formation in phosphatidylcholine: effect of acyl chain relative length, position, and unsaturation. Phys. Rev. E 58(3), 3662 (1998)Google Scholar
  49. 49.
    M. Rappolt, G. Pabst, G. Rapp, M. Kriechbaum, H. Amenitsch, C. Krenn, S. Bernstorff, P. Laggner, New evidence for gel-liquid crystalline phase coexistence in the ripple phase of phosphatidylcholines. Eur. Biophys. J. 29(2), 125–133 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Kiyotaka Akabori
    • 1
  1. 1.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations