Skip to main content

SVM-Based Classification of Diffusion Tensor Imaging Data for Diagnosing Alzheimer’s Disease and Mild Cognitive Impairment

  • Conference paper
  • First Online:
Intelligent Computing Theories and Methodologies (ICIC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9226))

Included in the following conference series:

Abstract

Alzheimer’s disease (AD) is the most common cause of dementia. Early detection of AD is important since treatment is more efficacious if introduced earlier. Mild cognitive impairment (MCI) is often a precursory stage of AD, so is considered to be a good target for early detection of AD. However, MCI is not easy to diagnose due to the subtlety of cognitive impairment. In this study, we developed a method to automate the diagnosis of AD and MCI using support vector machines (SVMs) and diffusion tensor imaging (DTI) data. We implemented two SVM models: one for classifying AD and MCI and another for classifying AD and normal control (NC). In both SVM models, the fractional anisotropy (FA) and the mode of anisotropy (MO) values of DTI were used as features. MO values resulted in a better performance than FA values in both models. In independent testing, the AD-MCI classifier showed a sensitivity of 69.2 %, a specificity of 100 % and an accuracy of 89.7 %, and the AD-NC classifier showed a sensitivity of 84.6 %, a specificity of 90.9 % and an accuracy of 87.5 %. These results are encouraging and suggest that SVM-based classification of DTI data is potentially powerful in early detection of MCI and AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vetrivel, K.S., Thinakaran, G.: Amyloidogenic processing of beta-amyloid precursor protein in intracellular compartments. Neurology 66(2 Suppl. 1), S69–S73 (2006)

    Article  Google Scholar 

  2. Jonsson, L., Lindgren, P., Wimo, A., Jonsson, B., Winblad, B.: The cost-effectiveness of donepezil therapy in Swedish patients with Alzheimer’s disease: a Markov model. Clin. Ther. 21(7), 1230–1240 (1999)

    Article  Google Scholar 

  3. Sperling, R.A., Aisen, P.S., Beckett, L.A., Bennett, D.A., Craft, S., Fagan, A.M., Iwatsubo, T., Jack, Jr., C.R., Kaye, J., Montine, T.J., Park, D.C., Reiman, E.M., Rowe, C.C., Siemers, E., Stern, Y., Yaffe, K., Carrillo, M.C., Thies, B., Morrison-Bogorad, M., Wagster, M.V., Phelps, C.H.: Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7(3), 280–292 (2011)

    Article  Google Scholar 

  4. Kloppel, S., Stonnington, C.M., Chu, C., Draganski, B., Scahill, R.I., Rohrer, J.D., Fox, N.C., Jack, Jr., C.R., Ashburner, J., Frackowiak, R.S.: Automatic classification of MR scans in Alzheimer’s disease. Brain 131(Pt. 3), 681–689 (2008)

    Article  MATH  Google Scholar 

  5. Magnin, B., Mesrob, L., Kinkingnehun, S., Pelegrini-Issac, M., Colliot, O., Sarazin, M., Dubois, B., Lehericy, S., Benali, H.: Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI. Neuroradiology 51(2), 73–83 (2009)

    Article  Google Scholar 

  6. Bischkopf, J., Busse, A., Angermeyer, M.C.: Mild cognitive impairment—a review of prevalence, incidence and outcome according to current approaches. Acta Psychiatr. Scand. 106, 403–414 (2002)

    Article  Google Scholar 

  7. Medina, D.A., Gaviria, M.: Diffusion tensor imaging investigations in Alzheimer’s disease: the resurgence of white matter compromise in the cortical dysfunction of the aging brain. Neuropsychiatr. Dis. Treat. 4(4), 737–742 (2008)

    Article  Google Scholar 

  8. Oishi, K., Mielke, M.M., Albert, M., Lyketsos, C.G., Mori, S.: DTI analyses and clinical applications in Alzheimer’s disease. J. Alzheimers Dis. 26(Suppl. 3), 287–296 (2011)

    Google Scholar 

  9. Hess, C.P.: Update on diffusion tensor imaging in Alzheimer’s disease. Magn. Reson. Imaging Clin. N. Am. 17(2), 215–224 (2009)

    Article  Google Scholar 

  10. Bastin, M.E., Le Roux, P.: On the application of a non-CPMG single-shot fast spin-echo sequence to diffusion tensor MRI of the human brain. Magn. Reson. Med. 48(1), 6–14 (2002)

    Article  Google Scholar 

  11. Ito, R., Mori, S., Melhem, E.R.: Diffusion tensor brain imaging and tractography. Neuroimaging Clin. N. Am. 12(1), 1–19 (2002)

    Article  Google Scholar 

  12. Melhem, E.R., Itoh, R., Jones, L., Barker, P.B.: Diffusion tensor MR imaging of the brain: effect of diffusion weighting on trace and anisotropy measurements. AJNR Am. J. Neuroradiol. 21(10), 1813–1820 (2000)

    Google Scholar 

  13. Pierpaoli, C., Jezzard, P., Basser, P.J., Barnett, A., Di Chiro, G.: Diffusion tensor MR imaging of the human brain. Radiology 201(3), 637–648 (1996)

    Article  Google Scholar 

  14. Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E., Watkins, K.E., Ciccarelli, O., Cader, M.Z., Matthews, P.M., Behrens, T.E.: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4), 1487–1505 (2006)

    Article  Google Scholar 

  15. Basser, P.J., Pierpaoli, C.: Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. 1996. J. Magn. Reson. 213(2), 560–570 (2011)

    Article  Google Scholar 

  16. Ennis, D.B., Kindlmann, G.: Orthogonal tensor invariants and the analysis of diffusion tensor magnetic resonance images. Magn. Reson. Med. 55(1), 136–146 (2006)

    Article  Google Scholar 

  17. Douaud, G., Jbabdi, S., Behrens, T.E., Menke, R.A., Gass, A., Monsch, A.U., Rao, A., Whitcher, B., Kindlmann, G., Matthews, P.M., Smith, S.: DTI measures in crossing-fiber areas: increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer’s disease. Neuroimage 55(3), 880–890 (2011)

    Article  Google Scholar 

  18. Noble, W.S.: What is a support vector machine? Nat. Biotechnol. 24(12), 1565–1567 (2006)

    Article  MathSciNet  Google Scholar 

  19. Robnik-Šikonja, M., Kononenko, I.: Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 53(1–2), 23–69 (2003)

    Article  Google Scholar 

  20. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: FSL. Neuroimage 62(2), 782–790 (2012)

    Article  Google Scholar 

  21. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002)

    Article  Google Scholar 

  22. Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M., Matthews, P.M.: Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl. 1), S208–S219 (2004)

    Article  Google Scholar 

  23. Haller, S., Nguyen, D., Rodriguez, C., Emch, J., Gold, G., Bartsch, A., Lovblad, K.O., Giannakopoulos, P.: Individual prediction of cognitive decline in mild cognitive impairment using support vector machine-based analysis of diffusion tensor imaging data. J. Alzheimers Dis. 22(1), 315–327 (2010)

    Google Scholar 

  24. O’Dwyer, L., Lamberton, F., Bokde, A.L.W., Ewers, M., Faluyi, Y.O., Tanner, C., Mazoyer, B., O’Neill, D., Bartley, M., Collins, D.R., Coughlan, T., Prvulovic, D., Hampel, H.: Using support vector machines with multiple indices of diffusion for automated classification of mild cognitive impairment. PLoS ONE 7(2), e32441 (2012)

    Article  Google Scholar 

  25. Scholkopf, B., Sung, K.K., Burges, C.J.C., Girosi, F., Niyogi, P., Poggio, T., Vapnik, V.: Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Trans. Sig. Process. 45(11), 2758–2765 (1997)

    Article  Google Scholar 

  26. Frank, E., Hall, M., Trigg, L., Holmes, G., Witten, I.H.: Data mining in bioinformatics using Weka. Bioinformatics 20(15), 2479–2481 (2004)

    Article  Google Scholar 

  27. Behrens, T.E., Berg, H.J., Jbabdi, S., Rushworth, M.F., Woolrich, M.W.: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? Neuroimage 34(1), 144–155 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Ministry of Education (2010-0020163) and in part by the Basic Science Research Program through the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning (2015R1A1A3A04001243).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyungsook Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lee, W., Park, B., Han, K. (2015). SVM-Based Classification of Diffusion Tensor Imaging Data for Diagnosing Alzheimer’s Disease and Mild Cognitive Impairment. In: Huang, DS., Jo, KH., Hussain, A. (eds) Intelligent Computing Theories and Methodologies. ICIC 2015. Lecture Notes in Computer Science(), vol 9226. Springer, Cham. https://doi.org/10.1007/978-3-319-22186-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22186-1_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22185-4

  • Online ISBN: 978-3-319-22186-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics