Skip to main content

Epistatic Genetic Algorithm for Test Case Prioritization

  • Conference paper
  • First Online:
Search-Based Software Engineering (SSBSE 2015)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9275))

Included in the following conference series:

Abstract

Search based technologies have been widely used in regression test suite optimization, including test case prioritization, test case selection and test suite minimization, to improve the efficiency and reduce the cost of testing. Unlike test case selection and test suite minimization, the evaluation of test case prioritization is based on the test case execution sequence, in which genetic algorithm is one of the most popular algorithms employed. When permutation encoding is used to represent the execution sequence, the execution of previous test cases can affect the presence of the following test cases, namely epistatic effect. In this paper, the application of epistatic domains theory in genetic algorithms for test case prioritization is analyzed, where Epistatic Test Case Segment is defined. Two associated crossover operators are proposed based on epistasis. The empirical studies show that the proposed two-point crossover operator, E-Ord, outperform the crossover PMX, and can produce higher fitness with a faster convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization: a survey. Softw. Test. Verif. Reliab. 22(2), 67–120 (2012)

    Article  Google Scholar 

  2. Wong, W.E., Horgan, J.R., London, S., Mathur, A.P.: Effect of test set minimization on fault detection effectiveness. In: 17th International Conference on Software Engineering, ICSE 1995, p. 41. IEEE (1995)

    Google Scholar 

  3. Li, Z., Harman, M., Hierons, R.M.: Search algorithms for regression test case prioritization. IEEE Trans. Softw. Eng. 33(4), 225–237 (2007)

    Article  Google Scholar 

  4. Li, Z., Bian, Y., Zhao, R., Cheng, J.: A fine-grained parallel multi-objective test case prioritization on GPU. In: Ruhe, G., Zhang, Y. (eds.) SSBSE 2013. LNCS, vol. 8084, pp. 111–125. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Singh, Y., Kaur, A., Suri, B.: Test case prioritization using ant colony optimization. ACM SIGSOFT Software Eng. Notes 35(4), 1–7 (2010)

    Article  MATH  Google Scholar 

  6. Hla, K.H.S., Choi, Y., Park, J.S.: Applying particle swarm optimization to prioritizing test cases for embedded real time software. In: Proceedings of the 2008 IEEE 8th International Conference on Computer and Information Technology Workshops, Sydney, Australia, pp. 527–532. IEEE, 8–11 July 2008

    Google Scholar 

  7. Davis, L.: Applying adaptive algorithms to epistatic domains. In: IJCAI, vol. 85, pp. 162–164 (1985)

    Google Scholar 

  8. Harman, M., Jones, B.F.: Search-based software engineering. Inf. Softw. Technol. 43(14), 833–839 (2001)

    Article  Google Scholar 

  9. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: Prioritizing test cases for regression testing. IEEE Trans. Softw. Eng. 27(10), 929–948 (2001)

    Article  Google Scholar 

  10. Smith, J.M., et al.: Evolutionary Genetics. Oxford University Press, Oxford (1989)

    Google Scholar 

  11. Beaslev, D., Bull, D.R., Martin, R.R.: An overview of genetic algorithms: Part 2, research topics. Univ. Comput. 15(4), 170–181 (1993)

    Google Scholar 

  12. Davidor, Y.: Epistasis variance: suitability of a representation to genetic algorithms. Complex Syst. 4(4), 369–383 (1990)

    Google Scholar 

  13. Paixão, T., Barton, N.: A variance decomposition approach to the analysis of genetic algorithms. In: Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary Computation Conference, pp. 845–852. ACM (2013)

    Google Scholar 

  14. Rochet, S., Slimane, M., Venturini, G.: Epistasis for real encoding in genetic algorithms. In: Australian and New Zealand Conference on Intelligent Information Systems, pp. 268–271. IEEE (1996)

    Google Scholar 

  15. Seo, D.I., Moon, B.R.: Voronoi quantizied crossover for traveling salesman problem. In: GECCO, pp. 544–552 (2002)

    Google Scholar 

  16. Larrañaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I., Dizdarevic, S.: Genetic algorithms for the travelling salesman problem: a review of representations and operators. Artif. Intell. Rev. 13(2), 129–170 (1999)

    Article  Google Scholar 

  17. Beasley, D., Martin, R., Bull, D.: An overview of genetic algorithms: Part 1. fundamentals. Univ. Comput. 15, 58 (1993)

    Google Scholar 

  18. Arcuri, A., Briand, L.: A practical guide for using statistical tests to assess randomized algorithms in software engineering. In: 2011 33rd International Conference on Software Engineering (ICSE), pp. 1–10. IEEE (2011)

    Google Scholar 

  19. Singh, Y., Kaur, A., Suri, B.: Test case prioritization using ant colony optimization. ACM SIGSOFT Softw. Eng. Notes 35(4), 1–7 (2010)

    Article  Google Scholar 

  20. Epitropakis, M.G., Yoo, S., Harman, M., Burke, E.K.: Pareto efficient multi-objective regression test suite prioritisation. Techreport 14(01), 01 (2014)

    Google Scholar 

  21. Yoo, S., Harman, M., Ur, S.: Highly scalable multi objective test suite minimisation using graphics cards. In: Cohen, M.B., Ó Cinnéide, M. (eds.) SSBSE 2011. LNCS, vol. 6956, pp. 219–236. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  22. Srinivas, M., Patnaik, L.M.: Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans. Syst. Man Cybern. 24(4), 656–667 (1994)

    Article  Google Scholar 

  23. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Acknowledgments

The work described in this paper is supported by the National Natural Science Foundation of China under Grant No. 61170082 and 61472025, the Program for New Century Excellent Talents in University (NCET-12-0757) and SRF for ROCS, SEM (LXJJ201303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yuan, F., Bian, Y., Li, Z., Zhao, R. (2015). Epistatic Genetic Algorithm for Test Case Prioritization. In: Barros, M., Labiche, Y. (eds) Search-Based Software Engineering. SSBSE 2015. Lecture Notes in Computer Science(), vol 9275. Springer, Cham. https://doi.org/10.1007/978-3-319-22183-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22183-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22182-3

  • Online ISBN: 978-3-319-22183-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics