Skip to main content

Targeting the Minimum Vertex Set Problem with an Enhanced Genetic Algorithm Improved with Local Search Strategies

  • Conference paper
  • First Online:
Intelligent Computing Theories and Methodologies (ICIC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9225))

Included in the following conference series:

  • 1777 Accesses

Abstract

The minimum feedback vertex set in a directed graph is a NP-hard problem i.e., it is very unlikely that a polynomial algorithm can be found to solve any instances of it. Solutions of the minimum feedback vertex set can find several real world applications. For this reason, it is useful to investigate heuristics that might give near-optimal solutions. Here we present an enhanced genetic algorithm with an ad hoc local search improvement strategy that finds good solutions for any given instance. To prove the effectiveness of the algorithm, we provide an implementation tested against a large variety of test cases. The results we obtain are compared to the results obtained by greedy and randomized algorithms for finding approximate solutions to the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Becker, A., Bar-Yehuda, R.: Randomized algorithms for the loop cutset problem. J. Artif. Intell. Res. 12, 219–234 (2000)

    MathSciNet  Google Scholar 

  2. Becker, A., Geiger, D.: Optimization of pearl’s method of conditioning and greedy like approximation algorithms for the vertex feedback set problem. Artif. Intell. 83, 167–188 (1996)

    Article  MathSciNet  Google Scholar 

  3. Bonsma, P., Lokshtanov, D.: Feedback vertex set in mixed graphs. Lect. Notes Comput. Sci. 6844, 122–133 (2011)

    Article  MathSciNet  Google Scholar 

  4. Cai, M.C., Deng, X., Zang, W.: An approximation algorithm for feedback vertex sets in tournaments. SIAM J. Comput. 30(6), 1993–2007 (2001)

    Article  MathSciNet  Google Scholar 

  5. Even, G., Naor, S., Schieber, B., Sudan, M.: Approximating minimum feedback sets and multicuts in directed graphs. Algorithmica 20, 151–174 (1998)

    Article  MathSciNet  Google Scholar 

  6. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J. Global Opt. 6, 109–133 (1995)

    Article  MathSciNet  Google Scholar 

  7. Festa, P., Pardalos, P.M., Resende, M.G.C.: Feedback set problems. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, Supplement, vol. A, pp. 209–259. Kluwer Academic Publishers, Dordrecht (1999)

    Chapter  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and Intractability - A guide to the theory of NP-completeness. W. H. Freeman and Company, San Francisco (1979)

    Google Scholar 

  9. Goldberg, D.E.: A comparative analysis of selection schemes used in genetic algorithms. Morgan Kaufmann Publishers, gregory rawlins (edn) (1991)

    Google Scholar 

  10. Hockbaum, D.S.: Approximating covering and packing problems: set cover, vertex cover, indipendent set, and related problems. In: Hockbaum, D.S. (ed.) Approximation Algorithms for NP-Hard Problems, pp. 94–143. PWS Publishing Company, Boston (1997)

    Google Scholar 

  11. Kann, V.: On the Approximability of NP-complete Optimization Problems. Ph.D. thesis, Department of Numerical Analysis and Computing Science, Royal Institute of Technology, Stockholm (1992)

    Google Scholar 

  12. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)

    Google Scholar 

  13. Khanna, S., Motwani, R., Sudan, M., Vazirani, U.: On syntactic versus computational views of approximability. SIAM J. Comp. 28, 164–191 (1999)

    Article  MathSciNet  Google Scholar 

  14. Lin, H.M., Jou, J.Y.: Computing minimum feedback vertex sets by contraction operations and its applications on cad. In: International Conference on Computer Design, (ICCD 1999). pp. 364–369 (10–13 October 1999)

    Google Scholar 

  15. Lin, H.M., Jou, J.Y.: On computing the minimum feedback vertex set of a directed graph by contraction operations. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 19(3), 295–307 (2000)

    Article  Google Scholar 

  16. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. System Sci 43, 425–440 (1991)

    Article  MathSciNet  Google Scholar 

  17. Pappalardo, F.: Using Viruses to Improve GAs. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3612, pp. 161–170. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  18. Pardalos, P.M., Qian, T., Resende, M.G.C.: A greedy randomized adaptive search procedure for feedback vertex set. J. Comb. Opt. 2, 399–412 (1999)

    Article  MathSciNet  Google Scholar 

  19. Pop, M., Kosack, D., Salzberg, S.: Hierarchical scaffolding with bambus. Genome Res. 14(1), 149–159 (2004)

    Article  Google Scholar 

  20. Seymour, P.: Packing directed circuits fractionally. Combinatorica 15, 281–288 (1995)

    Article  MathSciNet  Google Scholar 

  21. Shamir, A.: A linear time algorithm for finding cutsets in reduced graphs. J. Comput. 8, 645–655 (1979)

    MathSciNet  Google Scholar 

  22. Soranzo, N., Ramezani, F., Iacono, G., Altafini, C.: Decompositions of large-scale biological systems based on dynamical properties. Bioinform. 28(1), 76–83 (2012)

    Article  Google Scholar 

  23. Speckenmeyer, E.: On feedback problems in digraphs. Graph-Theoretic Concepts in Computer Science. Lecture Notes in Computer Science, vol. 411, pp. 218–231. Springer-Verlag, Berlin (1989)

    Chapter  Google Scholar 

  24. Taoka, S., Watanabe, T.: Performance comparison of approximation algorithms for the minimum weight vertex cover problem. In: SCAS 2012 - 2012 IEEE International Symposium on Circuits and Systems, vol. 6272111, pp. 632–635 (2012)

    Google Scholar 

  25. Wang, C., Lloyd, E., Soffa, M.: Feedbackvertexsetsandcyclicallyreduciblegraphs. J. ACM 32, 296–313 (1985)

    Article  MathSciNet  Google Scholar 

  26. Yannakakis, M.: Node and edge-delition np-complete problems. In: Proceedings of the 10-th Annual ACM Symposium on Theory of Computing. pp. 253–264 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Pappalardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cutello, V., Pappalardo, F. (2015). Targeting the Minimum Vertex Set Problem with an Enhanced Genetic Algorithm Improved with Local Search Strategies. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theories and Methodologies. ICIC 2015. Lecture Notes in Computer Science(), vol 9225. Springer, Cham. https://doi.org/10.1007/978-3-319-22180-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22180-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22179-3

  • Online ISBN: 978-3-319-22180-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics