On the Structure of Solution-Graphs for Boolean Formulas

  • Patrick ScharpfeneckerEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9210)


In this work we extend the study of solution graphs and prove that for boolean formulas in a class called CPSS, all connected components are partial cubes of small dimension, a statement which was proved only for some cases in [16]. In contrast, we show that general Schaefer formulas are powerful enough to encode graphs of exponential isometric dimension and graphs which are not even partial cubes.

Our techniques shed light on the detailed structure of st-connectivity for Schaefer and connectivity for CPSS formulas, problems which were already known to be solvable in polynomial time. We refine this classification and show that the problems in these cases are equivalent to the satisfiability problem of related formulas by giving mutual reductions between (st-)connectivity and satisfiability. An immediate consequence is that st-connectivity in (undirected) solution graphs of Horn-formulas is P-complete while for 2SAT formulas st-connectivity is NL-complete.


Partial cube Succinct Embedding st-Connectivity Connectivity Satisfiability 


  1. 1.
    Alon, N., Pudlák, P.: Equilateral sets in \(l_p^n\). Geom. Funct. Anal. 13(3), 467–482 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Arora, S., Barak, B.: Computational Complexity: A Modern Approach, 1st edn. Cambridge University Press, New York (2009)CrossRefGoogle Scholar
  3. 3.
    Balcázar, J.L., Lozano, A., Torán, J.: The complexity of algorithmic problems on succinct instances. In: Baeza-Yates, R., Manber, U. (eds.) Computer Science, Research and Applications. Springer, New York (1992)Google Scholar
  4. 4.
    Bonsma, P., Mouawad, A.E., Nishimura, N., Raman, V.: The complexity of bounded length graph recoloring and CSP reconfiguration. In: Cygan, M., Heggernes, P. (eds.) IPEC 2014. LNCS, vol. 8894, pp. 110–121. Springer, Heidelberg (2014) Google Scholar
  5. 5.
    Das, B., Scharpfenecker, P., Torán, J.: Succinct encodings of graph isomorphism. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 285–296. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  6. 6.
    Ekin, O., Hammer, P.L., Kogan, A.: On connected Boolean functions. Discrete Appl. Math. 96–97, 337–362 (1999)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Goldschlager, L.M.: The monotone and planar circuit value problems are log space complete for p. SIGACT News 9(2), 25–29 (1977)CrossRefGoogle Scholar
  8. 8.
    Gopalan, P., Kolaitis, P.G., Maneva, E., Papadimitriou, C.H.: The connectivity of boolean satisfiability: computational and structural dichotomies. SIAM J. Comput. 38(6), 2330–2355 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Juban, L.: Dichotomy theorem for the generalized unique satisfiability problem. In: Ciobanu, G., Păun, G. (eds.) FCT 1999. LNCS, vol. 1684, pp. 327–337. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  10. 10.
    Maneva, E., Mossel, E., Wainwright, M.J.: A new look at survey propagation and its generalizations. J. ACM 54(4), 1–41 (2007)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Mézard, M., Zecchina, R.: Random \(k\)-satisfiability problem: From an analytic solution to an efficient algorithm. Phys. Rev. E 66, 056126 (2002)CrossRefGoogle Scholar
  12. 12.
    Mézard, M., Ricci-Tersenghi, F., Zecchina, R.: Two solutions to diluted p-spin models and xorsat problems. J. Stat. Phys. 111(3–4), 505–533 (2003)CrossRefzbMATHGoogle Scholar
  13. 13.
    Ovchinnikov, S.: Graphs and Cubes. Universitext. Springer, New York (2011) CrossRefzbMATHGoogle Scholar
  14. 14.
    Papadimitriou, C.H., Yannakakis, M.: A note on succinct representations of graphs. Inf. Control 71(3), 181–185 (1986)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing - STOC 1978, pp. 216–226. ACM Press, New York, May 1978Google Scholar
  16. 16.
    Schwerdtfeger, K.W.: A Computational Trichotomy for Connectivity of Boolean Satisfiability, p. 24, December 2013.
  17. 17.
    Veith, H.: Languages represented by Boolean formulas. Inf. Process. Lett. 63(5), 251–256 (1997)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Veith, H.: How to encode a logical structure by an OBDD. In: Proceedings of the 13th IEEE Conference on Computational Complexity, pp. 122–131. IEEE Computer Society (1998)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Theoretical Computer ScienceUniversity of UlmUlmGermany

Personalised recommendations