Advertisement

Efficient RKA-Secure KEM and IBE Schemes Against Invertible Functions

  • Eiichiro Fujisaki
  • Keita Xagawa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9230)

Abstract

We propose efficient KEM and IBE schemes secure under the related-key attacks (RKAs) against almost all invertible related-key derivation (RKD) functions under the DBDH assumption. The class of RKD functions we consider is broader than the best known RKD function class: For example, the class contains polynomial functions of (bounded) polynomial degrees and the XOR functions simultaneously.

Keywords

Related-key attack security Invertible related-key derivation functions 

References

  1. 1.
    Abdalla, M., Benhamouda, F., Passelègue, A., Paterson, K.G.: Related-key security for pseudorandom functions beyond the linear barrier. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 77–94. Springer, Heidelberg (2014). https://eprint.iacr.org/2014/488 Google Scholar
  2. 2.
    Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combinatorics. In: Shmoys, D.B. (ed.) STOC 2013, pp. 774–783. ACM (2014). https://eprint.iacr.org/2013/201
  3. 3.
    Applebaum, B., Harnik, D., Ishai, Y.: Semantic security under related-key attacks and applications. In: Chazelle, B. (ed.) ICS 2011, pp. 45–60. Tsinghua University Press (2011). https://eprint.iacr.org/2010/544
  4. 4.
    Bellare, M., Cash, D.: Pseudorandom functions and permutations provably secure against related-key attacks. In: Rabin [30], pp. 666–684. https://eprint.iacr.org/2010/397
  5. 5.
    Bellare, M., Cash, D., Miller, R.: Cryptography secure against related-key attacks and tampering. In: Lee and Wang [25], pp. 486–503. https://eprint.iacr.org/2011/252
  6. 6.
    Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs, RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Bellare, M., Paterson, K.G., Thomson, S.: RKA Security beyond the linear barrier: IBE, encryption and signatures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 331–348. Springer, Heidelberg (2012). https://eprint.iacr.org/2012/514 CrossRefGoogle Scholar
  8. 8.
    Biham, E.: New types of cryptanalytic attacks using related keys. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409. Springer, Heidelberg (1994)Google Scholar
  9. 9.
    Biham, E.: New types of cryptanalytic attacks using related keys. J. Cryptol. 7(4), 229–246 (1994). A preliminary version appeared in EUROCRYPT 1993 (1993)CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Boyen, X.: Efficient selective identity-based encryption without random oracles. J. Cryptol. 24(4), 659–693 (2011). A preliminary version appeared in EUROCRYPT 2004, 2004MathSciNetCrossRefGoogle Scholar
  11. 11.
    Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors in cryptographic computations. J. Cryptol. 14(2), 101–119 (2001). A preliminary version appeared in EUROCRYPT 1997 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-based techniques. In: Atluri, V., Meadows, C., Juels, A. (eds.) CCS 2005, pp. 320–329. ACM (2005). https://eprint.iacr.org/2005/288
  14. 14.
    Choi, S.G., Kiayias, A., Malkin, T.: BiTR: built-in tamper resilience. In: Lee and Wang [25], pp. 740–758. https://eprint.iacr.org/2010/503
  15. 15.
    Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Yao, A.C.-C. (ed.) ICS 2010, pp. 434–452. Tsinghua University Press (2010). https://eprint.iacr.org/2009/608
  16. 16.
    Faust, S., Mukherjee, P., Venturi, D., Wichs, D.: Efficient non-malleable codes and key-derivation for poly-size tampering circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 111–128. Springer, Heidelberg (2014). https://eprint.iacr.org/2013/702 CrossRefGoogle Scholar
  17. 17.
    Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic tamper-proof (ATP) security: theoretical foundations for security against hardware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Goyal, V., O’Neill, A., Rao, V.: Correlated-input secure hash functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 182–200. Springer, Heidelberg (2011). https://eprint.iacr.org/2011/233 CrossRefGoogle Scholar
  19. 19.
    Jafargholi, Z., Wichs, D.: Tamper detection and continuous non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part I. LNCS, vol. 9014, pp. 451–480. Springer, Heidelberg (2015). https://eprint.iacr.org/2014/956 Google Scholar
  20. 20.
    Jia, D., Li, B., Lu, X., Mei, Q.: Related key secure PKE from hash proof systems. In: Yoshida, M., Mouri, K. (eds.) IWSEC 2014. LNCS, vol. 8639, pp. 250–265. Springer, Heidelberg (2014) Google Scholar
  21. 21.
    Jia, D., Lu, X., Li, B., Mei, Q.: RKA secure PKE based on the DDH and HR assumptions. In: Susilo, W., Reyhanitabar, R. (eds.) ProvSec 2013. LNCS, vol. 8209, pp. 271–287. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  22. 22.
    Kalai, Y.T., Kanukurthi, B., Sahai, A.: Cryptography with tamperable and leaky memory. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 373–390. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  23. 23.
    Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  24. 24.
    Knudsen, L.R.: Cryptanalysis of LOKI91. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT ’92. LNCS, vol. 718, pp. 196–208. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  25. 25.
    Lee, D.H., Wang, X. (eds.): ASIACRYPT 2011. LNCS, vol. 7073. Springer, Heidelberg (2011)zbMATHGoogle Scholar
  26. 26.
    Lewi, K., Montgomery, H., Raghunathan, A.: Improved constructions of PRFs secure against related-key attacks. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 44–61. Springer, Heidelberg (2014) Google Scholar
  27. 27.
    Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model. Manuscript, February 2012. Available at the authors’ citeGoogle Scholar
  28. 28.
    Paterson, K.G., Schuldt, J.C.N., Stam, M., Thomson, S.: On the joint security of encryption and signature, revisited. In: Lee and Wang [25], pp. 161–178. https://eprint.iacr.org/2011/486
  29. 29.
    Qin, B., Liu, S., Yuen, T.H., Deng, R.H., Chen, K.: Continuous non-malleable key derivation and its application to related-key security. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 557–578. Springer, Heidelberg (2015). https://eprint.iacr.org/2015/003 Google Scholar
  30. 30.
    Rabin, T. (ed.): CRYPTO 2010. LNCS, vol. 6223. Springer, Heidelberg (2010) zbMATHGoogle Scholar
  31. 31.
    von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 3rd edn. Cambridge University Press, Cambridge (2013) zbMATHCrossRefGoogle Scholar
  32. 32.
    Waters, B.: Efficient Identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005). https://eprint.iacr.org/2004/180 CrossRefGoogle Scholar
  33. 33.
    Wee, H.: Efficient chosen-ciphertext security via extractable hash proofs. In: Rabin [30], pp. 314–332Google Scholar
  34. 34.
    Wee, H.: Public key encryption against related key attacks. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 262–279. Springer, Heidelberg (2012) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.NTT Secure Platform LaboratoriesTokyoJapan

Personalised recommendations