Skip to main content

The Influence of Edaphic Factors on Spatial and Vertical Distribution of Radionuclides in Soil

  • Chapter
Book cover Radionuclides in the Environment

Abstract

This chapter summarises the edaphic factors affecting radionuclide spatial and vertical distribution in different soil types, with special emphasis on typical soil types in Serbia. The correlations between radionuclide and stable element content in soil and soil characteristics (particle size fractions, pH, carbonate content, organic matter content, cation exchange capacity, saturated hydraulic conductivity, specific electrical conductivity) are presented. These results provide insight into the main factors that affect radionuclide migration in the soil, which contributes to knowledge about radionuclide behaviour in the environment and factors governing their mobility within terrestrial ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Jundi J (2002) Population doses from terrestrial gamma exposure in areas near to old phosphate mine, Russaifa, Jordan. Radiat Meas 35:23–28

    Article  CAS  Google Scholar 

  • Allard B, Olofsson U, Torstenfelt B, Kipatsi H (1982) Sorption of actinides in well-defined oxidation states on geologic media. Mater Res Soc Symp Proc 11:775–782

    Article  CAS  Google Scholar 

  • Al-Masri MS (2006) Vertical distribution and inventories of 137Cs in the Syrian soils of the eastern Mediterranean region. J Environ Radioact 86:187–198

    Article  CAS  Google Scholar 

  • Anderson RF, Lehuray AP, Fleisher MQ, Murray JW (1989) Uranium deposition in Saanich Inlet sediments, Vancouver Island. Geochim Cosmochim Acta 53:2205–2213

    Article  CAS  Google Scholar 

  • Assinder DJ, Kelly M, Aston SR (1985) Tidal variations in dissolved and particulate phase radionuclide activities in the Esk estuary, England, and their distribution coefficients and particulate activity fractions. J Environ Radioact 2:1–22

    Article  CAS  Google Scholar 

  • Baeza A, Del Río M, Jiménez A, Miro C, Paniagua J (1995a) Relative sorption of Cs-137 and Sr-90 in soil—influence of particle-size, organic matter content and pH. Radiochim Acta 68:135–140

    CAS  Google Scholar 

  • Baeza A, Del Río M, Jiménez A, Miro C, Paniagua J (1995b) Influence of geology and soil particle size on the surface-area/volume activity ratio for natural radionuclides. J Radioanal Nucl Chem 189:289–299

    Article  CAS  Google Scholar 

  • Bagnall KW (1957) Chemistry of the rare radioelements. Academic, New York

    Google Scholar 

  • Bibler JP, Marson DB (1992) Behavior of mercury, lead, cesium, and uranyl ions on four SRS soils (U), Technical Report WSR-RP-92-326. Westinghouse Savannah River Company, Aiken, SC

    Google Scholar 

  • Bihari Á, Dezső Z (2008) Examination of the effect of particle size on the radionuclide content of soils. J Environ Radioact 99:1083–1089

    Article  CAS  Google Scholar 

  • Blanco P, Vera Tomé F, Lozano JC (2005) Fractionation of natural radionuclides in soils from a uranium mineralized area in the south-west of Spain. J Environ Radioact 79:315–330

    Article  CAS  Google Scholar 

  • Bowen HJM (1982) Environmental chemistry, vol 2. Royal Society of Chemistry, London

    Google Scholar 

  • Brückmann A, Wolters V (1994) Microbial immobilization and recycling of 137Cs in the organic layers of forest ecosystems: relationship to environmental conditions, humification and invertebrate activity. Sci Total Environ 157:249–256

    Article  Google Scholar 

  • Bunzl K (1997) Radionuklide. In: Blume HP, Felix-Henningsen P, Fischer WR, Frede HG, Horn R, Stahr K (eds) Handbuch der Bodenkunde. Ecomed, Landberg/Lech, Germany

    Google Scholar 

  • Campbell CA (1978) Soil organic carbon, nitrogen and fertility. In: Schnitzer M, Khan SV (eds) Soil organic matter (Developments in soil science), vol 8. Elsevier, Amsterdam

    Google Scholar 

  • Chao JH, Chuang CY (2011) Accumulation of radium in relation to some chemical analogues in Dicranopteris linearis. Appl Radiat Isot 69:261–267

    Article  CAS  Google Scholar 

  • Choppin GR (2003) Actinide speciation in the environment. Radiochim Acta 91:645–649

    Article  CAS  Google Scholar 

  • Ciuffo LEC, Belli M, Pasquale A, Menegon S, Velasco HR (2002) 137Cs and 40K soil-to-plant relationship in a semi natural grassland of the Giulia Alps, Italy. Sci Total Environ 295:69–80

    Article  CAS  Google Scholar 

  • Clarke LB (1992) Applications for coal-use residues, IEA CR/50. IEA Coal Research, London

    Google Scholar 

  • Clarke LB (1993) The fate of trace elements during coal combustion and gasification: an overview. Fuel 72:731–736

    Article  CAS  Google Scholar 

  • Cremers A, Elsen A, De Preter P, Maes A (1988) Quantitative analysis of radiocaesium retention in soils. Nature 335:247–249

    Article  CAS  Google Scholar 

  • Crowley KD (1997) Nuclear waste disposal: the technical challenges. Phys Today 50:32–39

    Article  CAS  Google Scholar 

  • Danesi PR, Moreno J, Makarewicz M, Radecki Z (2002) Residual radioactivity in the terrestrial environment of the Mururoa and Fangataufa Atolls nuclear weapon test sites. J Radioanal Nucl Chem 253:53–65

    Article  CAS  Google Scholar 

  • Dickson BL, Scott KM (1997) Interpretation of aerial gamma-ray surveys: adding the geochemical factors. AGSO J Aust Geol Geophys 17:187–210

    CAS  Google Scholar 

  • Dragović S, Gajić B, Dragović R, Jankovic-Mandic L, Slavkovic Beskoski L, Mihalovic N, Momcilovic M, Cujic M (2012) Edaphic factors affecting the vertical distribution of radionuclides in the different soil types of Belgrade, Serbia. J Environ Monit 14:127–137

    Article  Google Scholar 

  • Eikenberg J, Beer H, Bajo S (2004) Anthropogenic radionuclide emissions into the environment. In: Gieré R, Stille P (eds) Energy, waste and the environment: a geochemical perspective, geological society special publication 236. The Geological Society, London

    Google Scholar 

  • El-Arabi AM (2005) Waste and the environment: a geochemical perspective, geological society special publication 236. J Environ Radioact 81:11–19

    Article  CAS  Google Scholar 

  • Elejalde C, Herranz M, Romero F, Legarda F (1996) Correlations between soil parameters and radionuclide contents in samples from Biscay (Spain). Water Air Soil Pollut 89:23–31

    Article  CAS  Google Scholar 

  • Endo S, Kimura S, Takatsuji T, Nanasawa K, Imanaka T, Shizuma K (2012) Measurement of soil contamination by radionuclides due to the Fukushima Dai-ichi nuclear power plant accident and associated estimated cumulative external dose estimation. J Environ Radioact 111:18–27

    Article  CAS  Google Scholar 

  • ENS (2015) Nuclear power plants, world-wide. http://www.euronuclear.org/info/encyclopedia/n/nuclear-power-plant-world-wide.htm. Accessed 14 March 2015

  • Fawaris BH, Johanson KJ (1994) Radiocaesium in soil and plants in a forest in central Sweden. Sci Total Environ 157:133–138

    Article  CAS  Google Scholar 

  • Fomina M, Charnock JM, Hillier S, Alvarez R, Gadd GM (2007) Fungal transformations of uranium oxides. Environ Microbiol 9:1696–1710

    Article  CAS  Google Scholar 

  • Haas JR, Bailey EH, Purvis OW (1998) Bioaccumulation of metals by lichens; uptake of aqueous uranium by Peltigera membranacea as a function of time and pH. Am Mineral 83:1494–1502

    CAS  Google Scholar 

  • HPS (2000) NORM deposition in the pulp and paper industry. Health Physics Society (HPS), MacLean

    Google Scholar 

  • Hsi CK, Langmuir D (1985) Adsorption of uranyl onto ferric oxyhydroxides: application of the surface complexation site-binding model. Geochim Cosmochim Acta 49:1931–1941

    Article  CAS  Google Scholar 

  • IAEA (1998) Radiological conditions at the Semipalatinsk test site, Kazakhstan: preliminary assessment and recommendations for further study, Radiological Assessment Reports Series. Vienna

    Google Scholar 

  • IAEA (2001) Present and future environmental impact of the Chernobyl accident, IAEA-TECDOC-1240. Vienna

    Google Scholar 

  • IAEA (2003) Extent of environmental contamination by naturally occurring radioactive material (NORM) and technological options for mitigation, Technical Report Series No. 419. Vienna

    Google Scholar 

  • IAEA (2006) Applicability of monitored natural attenuation at radioactively contaminated sites, Technical Report Series No. 445. Vienna

    Google Scholar 

  • Igwe JC, Nnorom IC, Gbaruko BC (2005) Kinetics of radionuclides and heavy metals behavior in soils: implications for plant growth. Afr J Biotechnol 4:1541–1547

    CAS  Google Scholar 

  • Ivanovich M (1994) Uranium series disequilibrium: concepts and applications. Radiochim Acta 64:81–94

    CAS  Google Scholar 

  • Jibiri NN, Amakom CM (2011) Radiological assessment of radionuclide contents in soil waste streams from an oil production well of a petroleum development company in Warri, Niger Delta, Nigeria. Indoor Built Environ 20:246–252

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (1985) Trace elements in soils and plants. CRC, Boca Raton, FL

    Google Scholar 

  • Karadeniz Ö, Yaprak G (2008a) Geographical and vertical distribution of radiocesium levels in coniferous forest soils in Izmir. J Radioanal Nucl Chem 277:567–577

    Article  CAS  Google Scholar 

  • Karadeniz Ö, Yaprak G (2008b) Vertical distribution and gamma dose rates of 40K, 232Th, 238U and 137Cs in the selected forest soils in Izmir, Turkey. Radiat Prot Dosimetry 131:346–355

    Article  CAS  Google Scholar 

  • Karakelle B, Öztűrk N, Köse A, Varinlioglu A, Erkol AY, Yilmaz F (2002) Natural radioactivity in soil samples of Kocaeli basin, Turkey. J Radioanal Chem 254:649–651

    Article  CAS  Google Scholar 

  • Kemski J, Klingel R, Schneiders H, Siehl A, Wiegand J (1992) Geological structure and geochemistry controlling radon in soil gas. Radiat Prot Dosimetry 45:235–239

    CAS  Google Scholar 

  • Kim CS, Lee MH, Kim CK, Kim KH (1998) 90Sr, 137Cs, 239+240Pu and 238Pu concentrations in surface soils of Korea. J Environ Radioact 40:75–88

    Article  CAS  Google Scholar 

  • Klimkhanner GP, Palmer MR (1991) Uranium in the oceans: where it goes and why? Geochim Cosmochim Acta 55:1799–1806

    Article  Google Scholar 

  • Koch-Steindl H, Pröhl G (2001) Considerations on the behavior of long-lived radionuclides in the soil. Radiat Environ Biophys 40:93–104

    Article  CAS  Google Scholar 

  • Konoplev A, Kaminski S, Klemt E, Konopleva I, Miller R, Zibold G (2002) Comparative study of 137Cs partitioning between solid and liquid phases in Lakes Constance, Lugano and Vorsee. J Environ Radioact 58:1–11

    Article  CAS  Google Scholar 

  • Korobova E, Chizhikova NP, Linnik VG (2007) Distribution of 137Cs in the particle-size fractions and in the profiles of alluvial soils on floodplains of the Iput and its tributary Buldynka Rivers (Bryansk oblast). Euras Soil Sci 40:367–379

    Article  Google Scholar 

  • Landa ER (1980) Isolation of uranium mill tailings and component radionuclides from the biosphere: some earth science perspectives. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • Landa ER (2007) Naturally occurring radionuclides from industrial sources: characteristics and fate in the environment. In: Shaw G (ed) Radioactivity in the terrestrial environment. Elsevier, Amsterdam

    Google Scholar 

  • Langmuir D (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim Cosmochim Acta 42:547–569

    Article  CAS  Google Scholar 

  • Lee MH, Lee CW, Boo BH (1997) Distribution and characteristics of 239,240Pu and 137Cs in the soil of Korea. J Environ Radioact 37:1–16

    Article  CAS  Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. Wiley, New York, NY

    Google Scholar 

  • Livens FR, Horrill AD, Singleton DL (1994) Plutonium in estuarine sediments and the associated interstitial water. Estuar Coast Shelf Sci 38:479–489

    Article  CAS  Google Scholar 

  • Lozano JC, Blanco Rodríguez P, Vera Tomé F (2002) Plutonium in estuarine sediments and the associated interstitial water. J Environ Radioact 63:153–171

    Article  CAS  Google Scholar 

  • Lozano RL, Hernández-Ceballos MA, Adame JA, Casas-Ruiz M, Sorribas M, San Miquel EG, Bolivar JP (2011) Radioactive impact of Fukushima accident on the Iberian Peninsula: evolution and plume previous pathway. Environ Int 37:1259–1264

    Article  CAS  Google Scholar 

  • McConnel MA, Ramanujam VMS, Alcock NW, Gabehart GJ, Au WM (1998) Distribution of uranium-238 in environmental samples from a residential area impacted by mining and milling activities. Environ Toxicol Chem 17:841–850

    Article  Google Scholar 

  • Miller BB, Kandiyoti R, Dugwell DR (2002) Trace element emissions from combustion of secondary fuels with coal: a comparison of bench-scale experimental data with predictions of a thermodynamic equilibrium model. Energy Fuel 16:956–963

    Article  CAS  Google Scholar 

  • Mitchell N, Pérez-Sánchez D, Thorne MC (2013) A review of the behaviour of U-238 series radionuclides in soils and plants. J Radiol Prot 33:R17–R48

    Article  CAS  Google Scholar 

  • Mortvedt JJ (1994) Plant and soil relationships of uranium and thorium decay series radionuclides—a review. J Environ Qual 23:643–650

    Article  CAS  Google Scholar 

  • Navas A, Soto J, Machín J (2002) Distribution of uranium-238 in environmental samples from a residential area impacted by mining and milling activities. Appl Radiat Isot 57:579–589

    Article  CAS  Google Scholar 

  • Navas A, Machín J, Soto J (2005) Mobility of natural radionuclides and selected major and trace elements along a soil toposequence in the central Spanish Pyrenees. Soil Sci 170:743–757

    Article  CAS  Google Scholar 

  • Nimis PL (1996) Radiocesium in plants of forest ecosystems. Studia Geobot 15:3–49

    Google Scholar 

  • Officer SJ, Kravchenko A, Bollero GA, Sudduth KA, Kitchen NR, Wiebold WJ, Palm HL, Bullock DG (2004) Relationships between soil bulk electrical conductivity and the principal component analysis of topography and soil fertility values. Plant Soil 258:269–280

    Article  CAS  Google Scholar 

  • Othman I, Al-Masri MS (2007) Relationships between soil bulk electrical conductivity and the principal component analysis of topography and soil fertility values. Appl Radiat Isotopes 65:131–141

    Article  CAS  Google Scholar 

  • Oyedele JA, Shimboyo S, Sitoka S, Gaoseb F (2010) Assessment of natural radioactivity in the soils of Rossing Uranium Mine and its satellite town in western Namibia, southern Africa. Nucl Instrum Meth Phys Res A 619:467–469

    Article  CAS  Google Scholar 

  • Papastefanou C, Manolopoulou M, Charalambous S (1988) Radioecological measurements in the coal power plant environment. Radiat Prot Dosimetry 24:439–443

    CAS  Google Scholar 

  • Papp Z, Dezső Z, Daróczy S (2002) Significant radioactive contamination of soil around a coal-fired thermal power plant. J Environ Radioact 59:191–205

    Article  CAS  Google Scholar 

  • Payne TE, Davis JA, Lumpkin GR, Chisari R, Waite TD (2004) Surface complexation model of uranyl sorption on Georgia kaolinite. Appl Clay Sci 26:151–162

    Article  CAS  Google Scholar 

  • Peralta NR, Costa JL, Balzarini M, Angelini H (2013) Delineation of management zones with measurements of soil apparent electrical conductivity in the southeastern pampas. Can J Soil Sci 93:205–218

    Article  Google Scholar 

  • Petrović J, Ćujić M, Đorđević M, Dragovic R, Gajic B, Miljanic S, Dragovic S (2013) Spatial distribution and vertical migration of 137Cs in soils of Belgrade (Serbia) 25 years after the Chernobyl accident. Environ Sci Process Impacts 15:1279–1289

    Article  CAS  Google Scholar 

  • Pfingsten W, Hadermann J, Perrochet P (2001) Radionuclide release and transport from nuclear underground tests performed at Mururoa and Fangataufa—predictions under uncertainty. J Contam Hydrol 47:349–363

    Article  CAS  Google Scholar 

  • Pietrzak-Flis Z, Radwan I, Rosiak L, Wirth E (1996) Migration of 137Cs in soils and its transfer to mushrooms and vascular plants in mixed forests. Sci Total Environ 186:243–250

    Article  CAS  Google Scholar 

  • Pittauerová D, Hettwig B, Fischer HW (2011) Fukushima fallout in Northwest German environmental media. J Environ Radioact 102:877–880

    Article  CAS  Google Scholar 

  • Popović D, Spasić-Jokić V (2006) Naslov. Vojnosanit Pregl 63:481–487

    Article  Google Scholar 

  • Raabe OG (1996) Studies of the solubility of naturally-occurring radionuclides in petroleum scale, NORM/NARM: regulation and risk assessment. Health Physics Society, Scottsdale, AZ

    Google Scholar 

  • Rafferty B, Brennan M, Dawson D, Dowding D (2000) Mechanisms of 137Cs migration in coniferous forest soils. J Environ Radioact 48:131–143

    Article  CAS  Google Scholar 

  • Ragnarsdottir KV, Charlet L (2000) Uranium behavior in natural environments. In: Cotter-Howels KV, Batchelder JD, Campbell J, Valsami-Jones E (eds) Environmental mineralogy: microbial interactions, anthropogenic influences, contaminated land and waste management. Mineralogical Society of Great Britain and Ireland, London

    Google Scholar 

  • Rajaretnam G, Spitz HB (2000) Effect of leachability on environmental risk assessment for naturally occurring radioactive materials in petroleum oil fields. Health Phys 78:191–198

    Article  CAS  Google Scholar 

  • Rigol A, Vidal M, Rauret G (2002) An overview of the effect of organic matter on soil-radiocaesium interaction: implications in root uptake. J Environ Radioact 58:191–216

    Article  CAS  Google Scholar 

  • Ritz K (2006) Fungal roles in transport processes in soils. In: Gadd GM (ed) Fungi in biogeochemical cycles. Cambridge University Press, Cambridge

    Google Scholar 

  • Rivas MC (2005) Interactions between soil uranium contamination and fertilization with N, P and S on the uranium content and uptake of corn, sunflower and beans, and soil microbiological parameters (Special Issue). Landbauforschung Völkenrode–FAL Agricultural Research, Braunschweig

    Google Scholar 

  • Rouni PK, Petropoulos NP, Anagnostakis MJ, Hinis EP, Simopoulos SE (2001) Radioenvironmental survey of the Megalopolis lignite field basin. Sci Total Environ 272:261–272

    Article  CAS  Google Scholar 

  • Sahu SK, Tiwari M, Bhangare RC, Pandit GC (2014) Enrichment and particle size dependence of polonium and other naturally occurring radionuclides in coal ash. J Environ Radioact 138:421–426

    Article  CAS  Google Scholar 

  • Sanchez AL, Horrill AD, Howard BJ, Singleton D (1998) Anthropogenic radionuclides in tide-washed pastures bordering the Irish Sea coast of England and Wales. Water Air Soil Pollut 106:403–424

    Article  CAS  Google Scholar 

  • Sawhney BL (1972) Selective sorption and fixation of cations by clay minerals: a review. Clay Clay Miner 20:93–100

    Article  CAS  Google Scholar 

  • Schimmack W, Bunzl K, Kreutzer K, Schierl R (1991) Effects of acid irrigation and liming on the migration of radiocesium in a forest soil as observed by field measurements. Sci Total Environ 101:181–189

    Article  CAS  Google Scholar 

  • Sedlet J (1966) Radon and radium. In: Kolthoff IM, Elving PJ (eds) Treatise on analytical chemistry. Wiley, New York

    Google Scholar 

  • Selenska-Pobell S, Flemming K, Tzvetelina T, Raff J, Schnorpfeil M, Geissler A (2002) Bacterial communities in uranium mining waste piles and their interaction with heavy metals. In: Merkel B, Planer-Friedrich B, Wolkersdorfer C (eds) Uranium in the aquatic environment. Springer, Heidelberg, Germany

    Google Scholar 

  • Shanbag P, Choppin GJ (1981) Binding of uranyl by humic acid. Inorg Nucl Chem 43:3369–3372

    Article  Google Scholar 

  • Sheppard MI (1980) The environmental behaviour of uranium and thorium, AECL-6795. Atomic Energy of Canada Ltd., Pinawa

    Google Scholar 

  • Sheppard SC, Evenden WG (1988) Critical compilation and review of plant/soil concentration ratios for uranium, thorium and lead. J Environ Radioact 8:255–285

    Article  CAS  Google Scholar 

  • Stamberg K, Venkatesan K, Vasudeva Rau P (2003) Surface complexation modeling of uranyl ion sorption on mesoporous silica. Colloid Surf 221:149–162

    Article  CAS  Google Scholar 

  • Strebl F, Ehlken S, Gerzabek MH, Kirchner G (2007) Behaviour of radionuclides in soil/crop systems following contamination. In: Shaw G (ed) Radioactivity in the terrestrial environment. Elsevier, Amsterdam

    Google Scholar 

  • Syed HS (1999) Comparison studies adsorption of thorium and uranium on pure clay minerals and local Malaysian soil sediments. J Radioanal Nucl Chem 241:11–14

    Article  CAS  Google Scholar 

  • Torsvik V, Øvreås L (2007) Microbial phylogeny and diversity in soil. In: Van Elsas J, Jansson JK, Trevors JT (eds) Modern soil microbiology. CRC, Baton Rouge, FL

    Google Scholar 

  • Turner M, Rudin M, Cizdziel J, Hodge V (2003) Excess plutonium in soil near the Nevada Test Site, USA. Environ Pollut 125:193–203

    Article  CAS  Google Scholar 

  • UNSCEAR (2010) Sources and effects of ionizing radiation, UNSCEAR 2008 Report to the General Assembly with Scientific Annexes, Vol. I. New York

    Google Scholar 

  • USDOE/NV (1992) United States Nuclear Tests, July 1945 through September 1992. United States Department of Energy, Nevada Operations Office (USDOE/NV), Las Vegas

    Google Scholar 

  • USEPA (1999) Understanding variation in partition coefficients, Kd, values: review of geochemistry and available Kd values for cadmium, cesium, chromium, lead, plutonium, radon, strontium, thorium, tritium (3H), and uranium, EPA 402-R-99-004B, vol II. Washington, DC

    Google Scholar 

  • USEPA (2004) Understanding variation in partition coefficient Kd values, Volume III: review of geochemistry and available K d values for americium, arsenic, curium, iodine, neptunium, radium, and technetium, EPA 402-R-04-002C. Washington, DC

    Google Scholar 

  • USGS (1994) Natural radioactivity in the environment, USGS Factsheet. Denver, CO

    Google Scholar 

  • Van den Bygaart AJ, Protz R, McCabe DC (1999) Distribution of natural radionuclides and 137Cs in soils of southwestern Ontario. Can J Soil Sci 79:161–171

    Article  Google Scholar 

  • Van der Graaf ER, Koomans RL, Limburg J, De Vries K (2007) In situ radiometric mapping as a proxy of sediment contamination: assessment of the underlying geochemical and -physical principles. Appl Radiat Isot 65:619–633

    Article  CAS  Google Scholar 

  • Van Netten C, Morley DR (1983) Uptake of uranium, molybdenum, copper, and selenium by the radish from uranium-rich soils. Arch Environ Health 38:172–175

    Article  Google Scholar 

  • Vega FA, Covelo EF, Andrade ML, Marcet P (2004) Relationships between heavy metals content and soil properties in mine soil. Anal Chim Acta 524:141–150

    Article  CAS  Google Scholar 

  • Volesky B (1990) Biosorption of heavy metals. CRC, Boca Raton, FL

    Google Scholar 

  • Waite TD, Davis JA, Payne TE, Waychunas GA, Xu N (1994) Uranium (VI) adsorption to ferrihydrite: application of a surface complexation model. Geochim Cosmochim Acta 58:5465–5478

    Article  CAS  Google Scholar 

  • Watkins BM, Smith GM, Little RH (1999) A biosphere modeling methodology for dose assessment of the potential Yucca mountain deep geological high level radioactive waste repository. Health Phys 76:355–368

    Article  CAS  Google Scholar 

  • Wilford J (2008) Remote sensing with gamma-ray spectrometry. In: McKenzie NJ, Grundy MJ, Webster R, Ringrose-Voase AJ (eds) Guidelines for surveying soil and land resources, 2nd edn. Csiro Publishing, Melbourne

    Google Scholar 

  • Xu L, Wang Y, Lü J, Lu X, Liu Y, Liu XY (2002) Radioactive contamination of the environment as a result of uranium production: a case study at the abandoned Lincang uranium mine, Yunnan Province, China. Sci China B 45:11–19

    Article  CAS  Google Scholar 

  • Yoshida S, Muramatsu Y, Dvornik AM, Zhuchenko TA, Linkov I (2004) Equilibrium of radiocesium with stable cesium within the biological cycle of contaminated forest ecosystems. J Environ Radioact 75:301–313

    Article  CAS  Google Scholar 

  • Zhang PC, Krumhansl JL, Brady PV (2002) Introduction to properties, sources and characteristics of soil radionuclides. In: Zhang PC, Brady P (eds) Geochemistry of soil radionuclides. Soil Science Society of America, Madison, WI

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Project No. III43009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snežana Dragović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dragović, S., Petrović, J., Dragović, R., Đorđević, M., Đokić, M., Gajić, B. (2015). The Influence of Edaphic Factors on Spatial and Vertical Distribution of Radionuclides in Soil. In: Walther, C., Gupta, D. (eds) Radionuclides in the Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-22171-7_3

Download citation

Publish with us

Policies and ethics