Stress and Epilepsy

  • Clare M. Galtrey
  • Hannah R. CockEmail author
Part of the Neuropsychiatric Symptoms of Neurological Disease book series (NSND)


The notion that stress, the physiological and/or behavioral response to event(s) interpreted as threatening to well-being, plays a role in triggering seizures or even causing epilepsy has been extensively studied in both experimental and clinical contexts. People with epilepsy consistently report stress as one of the most common triggers, although disentangling from confounders such as sleep deprivation, mood, and alcohol, and cause from effect has proved challenging. A great deal of effort (and money) has gone into pre-clinical and clinical research, including more recently functional imaging studies, such that we now have a good understanding of pathways and potential mechanisms. Similarly, there has been considerable work looking at ways to reduce stress, which can undoubtedly be of benefit in terms of psychological well-being, though may not improve seizure control. There has been very little consideration of cost-effectiveness or cost-utility thus far, which is of particular importance when there are inevitable limitations on resources. Thus beyond heightened awareness about the potential for stress and epilepsy to interact, little of this work has as yet translated into meaningful changes for clinical practice. Hopefully, further carefully directed preclinical and especially clinical research will lead to greater understanding of the interaction and benefit to patients.


Epilepsy Seizures Stress Mechanisms Treatment Epileptogenesis Prenatal Delayed Effects 


  1. 1.
    McEwen BS. The neurobiology of stress: from serendipity to clinical relevance. Brain Res. 2000;886(1–2):172–89.PubMedCrossRefGoogle Scholar
  2. 2.
    Shorvon SD. The causes of epilepsy: changing concepts of etiology of epilepsy over the past 150 years. Epilepsia. 2011;52(6):1033–44.PubMedCrossRefGoogle Scholar
  3. 3.
    Gilboa T. Emotional stress-induced seizures: another reflex epilepsy? Epilepsia. 2012;53(2):e29–32.PubMedCrossRefGoogle Scholar
  4. 4.
    Eggers AE. Temporal lobe epilepsy is a disease of faulty neuronal resonators rather than oscillators, and all seizures are provoked, usually by stress. Med Hypotheses. 2007;69(6):1284–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Spatt J, Langbauer G, Mamoli B. Subjective perception of seizure precipitants: results of a questionnaire study. Seizure. 1998;7(5):391–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Mattson RH. Emotional effects on seizure occurrence. Adv Neurol. 1991;55:453–60.PubMedGoogle Scholar
  7. 7.
    Hayden M, Penna C, Buchanan N. Epilepsy: patient perceptions of their condition. Seizure. 1992;1(3):191–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Hart YM, Shorvon SD. The nature of epilepsy in the general population. I. Characteristics of patients receiving medication for epilepsy. Epilepsy Res. 1995;21(1):43–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Cull CA, Fowler M, Brown SW. Perceived self-control of seizures in young people with epilepsy. Seizure. 1996;5(2):131–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Frucht MM, Quigg M, Schwaner C, Fountain NB. Distribution of seizure precipitants among epilepsy syndromes. Epilepsia. 2000;41(12):1534–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Spector S, Cull C, Goldstein LH. Seizure precipitants and perceived self-control of seizures in adults with poorly-controlled epilepsy. Epilepsy Res. 2000;38(2–3):207–16.PubMedCrossRefGoogle Scholar
  12. 12.
    Haut SR, Vouyiouklis M, Shinnar S. Stress and epilepsy: a patient perception survey. Epilepsy Behav. 2003;4(5):511–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Nakken KO, Solaas MH, Kjeldsen MJ, Friis ML, Pellock JM, Corey LA. Which seizure-precipitating factors do patients with epilepsy most frequently report? Epilepsy Behav. 2005;6(1):85–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Tan JH, Wilder-Smith E, Lim EC, Ong BK. Frequency of provocative factors in epileptic patients admitted for seizures: a prospective study in Singapore. Seizure. 2005;14(7):464–9.PubMedCrossRefGoogle Scholar
  15. 15.
    da Silva SP, Lin K, Garzon E, Sakamoto AC, Yacubian EM. Self-perception of factors that precipitate or inhibit seizures in juvenile myoclonic epilepsy. Seizure. 2005;14(5):340–6.CrossRefGoogle Scholar
  16. 16.
    Sperling MR, Schilling CA, Glosser D, Tracy JI, Asadi-Pooya AA. Self-perception of seizure precipitants and their relation to anxiety level, depression, and health locus of control in epilepsy. Seizure. 2008;17(4):302–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Thapar A, Kerr M, Harold G. Stress, anxiety, depression, and epilepsy: investigating the relationship between psychological factors and seizures. Epilepsy Behav. 2009;14(1):134–40.PubMedCrossRefGoogle Scholar
  18. 18.
    Dionisio J, Tatum WO. Triggers and techniques in termination of partial seizures. Epilepsy Behav. 2010;17(2):210–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Swinkels WA, Engelsman M, Kasteleijn-Nolst Trenite DG, Baal MG, de Haan GJ, Oosting J. Influence of an evacuation in February 1995 in The Netherlands on the seizure frequency in patients with epilepsy: a controlled study. Epilepsia. 1998;39(11):1203–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Bosnjak J, Vukovic-Bobic M, Mejaski-Bosnjak V. Effect of war on the occurrence of epileptic seizures in children. Epilepsy Behav. 2002;3(6):502–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Neufeld MY, Sadeh M, Cohn DF, Korczyn AD. Stress and epilepsy: the Gulf war experience. Seizure. 1994;3(2):135–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Christensen J, Li J, Vestergaard M, Olsen J. Stress and epilepsy: a population-based cohort study of epilepsy in parents who lost a child. Epilepsy Behav. 2007;11(3):324–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Moshe S, Shilo M, Chodick G, Yagev Y, Blatt I, Korczyn AD, et al. Occurrence of seizures in association with work-related stress in young male army recruits. Epilepsia. 2008;49(8):1451–6.PubMedCrossRefGoogle Scholar
  24. 24.
    Berkhout J, Walter DO, Adey WR. Alterations of the human electroencephalogram induced by stressful verbal activity. Electroencephalogr Clin Neurophysiol. 1969;27(5):457–69.PubMedCrossRefGoogle Scholar
  25. 25.
    Stevens JR. Emotional activation of the electroencephalogram in patients with convulsive disorders. J Nerv Ment Dis. 1959;128(4):339–51.PubMedCrossRefGoogle Scholar
  26. 26.
    Feldman RG, Paul NL. Identity of emotional triggers in epilepsy. J Nerv Ment Dis. 1976;162(5):345–53.PubMedCrossRefGoogle Scholar
  27. 27.
    Haut SR, Hall CB, Borkowski T, Tennen H, Lipton RB. Modeling seizure self-prediction: an e-diary study. Epilepsia. 2013;54(11):1960–7.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Temkin NR, Davis GR. Stress as a risk factor for seizures among adults with epilepsy. Epilepsia. 1984;25(4):450–6.PubMedCrossRefGoogle Scholar
  29. 29.
    Neugebauer R, Paik M, Hauser WA, Nadel E, Leppik I, Susser M. Stressful life events and seizure frequency in patients with epilepsy. Epilepsia. 1994;35(2):336–43.PubMedCrossRefGoogle Scholar
  30. 30.
    Haut SR, Hall CB, Masur J, Lipton RB. Seizure occurrence: precipitants and prediction. Neurology. 2007;69(20):1905–10.PubMedCrossRefGoogle Scholar
  31. 31.
    Lovallo WR. Stress and health: biological and psychological interactions (behavioral medicine & health psychology). 2nd ed. Thousand Oaks: SAGE Publications, Inc; London, UK. 2004.Google Scholar
  32. 32.
    McEwen BS, Lasley EN. The end of stress as we know it. 1st ed. Washington: Joseph Henry Press; 2002. 262 p.Google Scholar
  33. 33.
    Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci. 2009;10(6):397–409.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Allendorfer JB, Szaflarski JP. Contributions of fMRI towards our understanding of the response to psychosocial stress in epilepsy and psychogenic nonepileptic seizures. Epilepsy Behav. 2014;35:19–25.PubMedCrossRefGoogle Scholar
  35. 35.
    de Kloet ER, Joels M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci. 2005;6(6):463–75.PubMedCrossRefGoogle Scholar
  36. 36.
    Joels M, Baram TZ. The neuro-symphony of stress. Nat Rev Neurosci. 2009;10(6):459–66.PubMedCentralPubMedGoogle Scholar
  37. 37.
    Herman JP, Ostrander MM, Mueller NK, Figueiredo H. Limbic system mechanisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29(8):1201–13.PubMedCrossRefGoogle Scholar
  38. 38.
    Joels M, Sarabdjitsingh RA, Karst H. Unraveling the time domains of corticosteroid hormone influences on brain activity: rapid, slow, and chronic modes. Pharmacol Rev. 2012;64(4):901–38.PubMedCrossRefGoogle Scholar
  39. 39.
    McEwen BS. Allostasis and allostatic load: implications for neuropsychopharmacology. Neuropsychopharmacology. 2000;22(2):108–24.PubMedCrossRefGoogle Scholar
  40. 40.
    Joels M. Stress, the hippocampus, and epilepsy. Epilepsia. 2009;50(4):586–97.PubMedCrossRefGoogle Scholar
  41. 41.
    Sawyer NT, Escayg A. Stress and epilepsy: multiple models, multiple outcomes. J Clin Neurophysiol. 2010;27(6):445–52.PubMedCrossRefGoogle Scholar
  42. 42.
    Reddy DS. Is there a physiological role for the neurosteroid THDOC in stress-sensitive conditions? Trends Pharmacol Sci. 2003;24(3):103–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Reddy DS. Role of hormones and neurosteroids in epileptogenesis. Front Cell Neurosci. 2013;7.Google Scholar
  44. 44.
    Mitchell EA, Herd MB, Gunn BG, Lambert JJ, Belelli D. Neurosteroid modulation of GABAA receptors: molecular determinants and significance in health and disease. Neurochem Int. 2008;52(4–5):588–95.PubMedCrossRefGoogle Scholar
  45. 45.
    Weiss GK, Castillo N, Fernandez M. Amygdala kindling rate is altered in rats with a deficit in the responsiveness of the hypothalamo-pituitary-adrenal axis. Neurosci Lett. 1993;157(1):91–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Karst H, de Kloet ER, Joels M. Episodic corticosterone treatment accelerates kindling epileptogenesis and triggers long-term changes in hippocampal CA1 cells, in the fully kindled state. Eur J Neurosci. 1999;11(3):889–98.PubMedCrossRefGoogle Scholar
  47. 47.
    Taher TR, Salzberg M, Morris MJ, Rees S, O'Brien TJ. Chronic low-dose corticosterone supplementation enhances acquired epileptogenesis in the rat amygdala kindling model of TLE. Neuropsychopharmacology. 2005;30(9):1610–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Roberts AJ, Keith LD. Mineralocorticoid receptors mediate the enhancing effects of corticosterone on convulsion susceptibility in mice. J Pharmacol Exp Ther. 1994;270(2):505–11.PubMedGoogle Scholar
  49. 49.
    Bowers BJ, Bosy TZ, Wehner JM. Adrenalectomy increases bicuculline-induced seizure sensitivity in long-sleep and short-sleep mice. Pharmacol Biochem Behav. 1991;38(3):593–600.PubMedCrossRefGoogle Scholar
  50. 50.
    Schridde U, van Luijtelaar G. Corticosterone increases spike-wave discharges in a dose- and time-dependent manner in WAG/Rij rats. Pharmacol Biochem Behav. 2004;78(2):369–75.PubMedCrossRefGoogle Scholar
  51. 51.
    Castro OW, Santos VR, Pun RY, McKlveen JM, Batie M, Holland KD, et al. Impact of corticosterone treatment on spontaneous seizure frequency and epileptiform activity in mice with chronic epilepsy. PLoS One. 2012;7(9), e46044.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Rose RP, Bridger WH. Hormonal influences on seizure kindling: the effects of post-stimulation ACTH or cortisone injections. Brain Res. 1982;231(1):75–84.PubMedCrossRefGoogle Scholar
  53. 53.
    Rose RP, Morell F, Hoeppner TJ. Influences of pituitary-adrenal hormones on kindling. Brain Res. 1979;169(2):303–15.PubMedCrossRefGoogle Scholar
  54. 54.
    Cottrell GA, Nyakas C, de Kloet ER, Bohus B. Hippocampal kindling: corticosterone modulation of induced seizures. Brain Res. 1984;309(2):373–6.CrossRefGoogle Scholar
  55. 55.
    Lee PH, Grimes L, Hong JS. Glucocorticoids potentiate kainic acid-induced seizures and wet dog shakes. Brain Res. 1989;480(1–2):322–5.PubMedCrossRefGoogle Scholar
  56. 56.
    Scotti AL, Bollag O, Nitsch C. Seizure patterns of Mongolian gerbils subjected to a prolonged weekly test schedule: evidence for a kindling-like phenomenon in the adult population. Epilepsia. 1998;39(6):567–76.PubMedCrossRefGoogle Scholar
  57. 57.
    Tolmacheva EA, Oitzl MS, van Luijtelaar G. Stress, glucocorticoids and absences in a genetic epilepsy model. Horm Behav. 2012;61(5):706–10.PubMedCrossRefGoogle Scholar
  58. 58.
    Tolmacheva EA, van Luijtelaar G. The role of ovarian steroid hormones in the regulation of basal and stress induced absence seizures. J Steroid Biochem Mol Biol. 2007;104(3–5):281–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Matsumoto K, Nomura H, Murakami Y, Taki K, Takahata H, Watanabe H. Long-term social isolation enhances picrotoxin seizure susceptibility in mice: up-regulatory role of endogenous brain allopregnanolone in GABAergic systems. Pharmacol Biochem Behav. 2003;75(4):831–5.PubMedCrossRefGoogle Scholar
  60. 60.
    Chadda R, Devaud LL. Sex differences in effects of mild chronic stress on seizure risk and GABAA receptors in rats. Pharmacol Biochem Behav. 2004;78(3):495–504.PubMedCrossRefGoogle Scholar
  61. 61.
    Forcelli PA, Orefice LL, Heinrichs SC. Neural, endocrine and electroencephalographic hyperreactivity to human contact: a diathesis-stress model of seizure susceptibility in El mice. Brain Res. 2007;1144:248–56.PubMedCrossRefGoogle Scholar
  62. 62.
    Hollrigel GS, Chen K, Baram TZ, Soltesz I. The pro-convulsant actions of corticotropin-releasing hormone in the hippocampus of infant rats. Neuroscience. 1998;84(1):71–9.PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Moghaddam B, Bolinao ML, Stein-Behrens B, Sapolsky R. Glucocorticoids mediate the stress-induced extracellular accumulation of glutamate. Brain Res. 1994;655(1–2):251–4.PubMedCrossRefGoogle Scholar
  64. 64.
    Serra M, Pisu MG, Mostallino MC, Sanna E, Biggio G. Changes in neuroactive steroid content during social isolation stress modulate GABAA receptor plasticity and function. Brain Res Rev. 2008;57(2):520–30.PubMedCrossRefGoogle Scholar
  65. 65.
    Dong E, Matsumoto K, Uzunova V, Sugaya I, Takahata H, Nomura H, et al. Brain 5alpha-dihydroprogesterone and allopregnanolone synthesis in a mouse model of protracted social isolation. Proc Natl Acad Sci U S A. 2001;98(5):2849–54.PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    MacKenzie G, Maguire J. Chronic stress shifts the GABA reversal potential in the hippocampus and increases seizure susceptibility. Epilepsy Res. 2015;109:13–27.PubMedCrossRefGoogle Scholar
  67. 67.
    Goldberg EM, Coulter DA. Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction. Nat Rev Neurosci. 2013;14(5):337–49.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Szafarczyk A, Caracchini M, Rondouin G, Ixart G, Malaval F, Assenmacher I. Plasma ACTH and corticosterone responses to limbic kindling in the rat. Exp Neurol. 1986;92(3):583–90.PubMedCrossRefGoogle Scholar
  69. 69.
    Karst H, Bosma A, Hendriksen E, Kamphuis W, de Kloet ER, Joels M. Effect of adrenalectomy in kindled rats. Neuroendocrinology. 1997;66(5):348–59.PubMedCrossRefGoogle Scholar
  70. 70.
    Mazarati AM, Shin D, Kwon YS, Bragin A, Pineda E, Tio D, et al. Elevated plasma corticosterone level and depressive behavior in experimental temporal lobe epilepsy. Neurobiol Dis. 2009;34(3):457–61.PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    An SJ, Park SK, Hwang IK, Kim HS, Seo MO, Suh JG, et al. Altered corticotropin-releasing factor (CRF) receptor immunoreactivity in the gerbil hippocampal complex following spontaneous seizure. Neurochem Int. 2003;43(1):39–45.PubMedCrossRefGoogle Scholar
  72. 72.
    Zobel A, Wellmer J, Schulze-Rauschenbach S, Pfeiffer U, Schnell S, Elger C, et al. Impairment of inhibitory control of the hypothalamic pituitary adrenocortical system in epilepsy. Eur Arch Psychiatry Clin Neurosci. 2004;254(5):303–11.PubMedCrossRefGoogle Scholar
  73. 73.
    Galimberti CA, Magri F, Copello F, Arbasino C, Cravello L, Casu M, et al. Seizure frequency and cortisol and dehydroepiandrosterone sulfate (DHEAS) levels in women with epilepsy receiving antiepileptic drug treatment. Epilepsia. 2005;46(4):517–23.PubMedCrossRefGoogle Scholar
  74. 74.
    Calabrese VP, Gruemer HD, Tripathi HL, Dewey W, Fortner CA, DeLorenzo RJ. Serum cortisol and cerebrospinal fluid beta-endorphins in status epilepticus. Their possible relation to prognosis. Arch Neurol. 1993;50(7):689–93.PubMedCrossRefGoogle Scholar
  75. 75.
    Allendorfer JB, Heyse H, Mendoza L, Nelson EB, Eliassen JC, Storrs JM, et al. Physiologic and cortical response to acute psychosocial stress in left temporal lobe epilepsy - a pilot cross-sectional fMRI study. Epilepsy Behav. 2014;36:115–23.PubMedCrossRefGoogle Scholar
  76. 76.
    Bernhardt BC, Hong S, Bernasconi A, Bernasconi N. Imaging structural and functional brain networks in temporal lobe epilepsy. Front Hum Neurosci. 2013;7:624.PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Li J, Vestergaard M, Obel C, Precht DH, Christensen J, Lu M, et al. Prenatal stress and epilepsy in later life: a nationwide follow-up study in Denmark. Epilepsy Res. 2008;81(1):52–7.PubMedCrossRefGoogle Scholar
  78. 78.
    Donnelly KM, Schefft BK, Howe SR, Szaflarski JP, Yeh HS, Privitera MD. Moderating effect of optimism on emotional distress and seizure control in adults with temporal lobe epilepsy. Epilepsy Behav. 2010;18(4):374–80.PubMedCrossRefGoogle Scholar
  79. 79.
    Shang N-X, Zou L-P, Zhao J-B, Zhang F, Li H. Association between prenatal stress and infantile spasms: a case–control study in China. Pediatr Neurol. 2010;42(3):181–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Haung L-T. Early-life stress impacts the developing hippocampus and primes seizure occurrence: cellular, molecular, and epigenetic mechanisms. Front Mol Neurosci. 2014;7(Article 8):1–15.Google Scholar
  81. 81.
    Jones NC, O'Brien TJ, Carmant L. Interaction between sex and early-life stress: influence on epileptogenesis and epilepsy comorbidities. Neurobiol Dis. 2014;72 Pt B:233–41.PubMedCrossRefGoogle Scholar
  82. 82.
    Edwards HE, Dortok D, Tam J, Won D, Burnham WM. Prenatal stress alters seizure thresholds and the development of kindled seizures in infant and adult rats. Horm Behav. 2002;42(4):437–47.PubMedCrossRefGoogle Scholar
  83. 83.
    Beck SL, Gavin DL. Susceptibility of mice to audiogenic seizures is increased by handling their dams during gestation. Science. 1976;193(4251):427–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Frye CA, Bayon LE. Prenatal stress reduces the effectiveness of the neurosteroid 3 alpha,5 alpha-THP to block kainic-acid-induced seizures. Dev Psychobiol. 1999;34(3):227–34.PubMedCrossRefGoogle Scholar
  85. 85.
    Salzberg M, Kumar G, Supit L, Jones NC, Morris MJ, Rees S, et al. Early postnatal stress confers enduring vulnerability to limbic epileptogenesis. Epilepsia. 2007;48(11):2079–85.PubMedCrossRefGoogle Scholar
  86. 86.
    Jones NC, Kumar G, O'Brien TJ, Morris MJ, Rees SM, Salzberg MR. Anxiolytic effects of rapid amygdala kindling, and the influence of early life experience in rats. Behav Brain Res. 2009;203(1):81–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Kumar G, Jones NC, Morris MJ, Rees S, O'Brien TJ, Salzberg MR. Early life stress enhancement of limbic epileptogenesis in adult rats: mechanistic insights. PLoS One. 2011;6(9), e24033.PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Koe AS, Salzberg MR, Morris MJ, O'Brien TJ, Jones NC. Early life maternal separation stress augmentation of limbic epileptogenesis: the role of corticosterone and HPA axis programming. Psychoneuroendocrinology. 2014;42:124–33.PubMedCrossRefGoogle Scholar
  89. 89.
    Huang LT, Holmes GL, Lai MC, Hung PL, Wang CL, Wang TJ, et al. Maternal deprivation stress exacerbates cognitive deficits in immature rats with recurrent seizures. Epilepsia. 2002;43(10):1141–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Lai MC, Lui CC, Yang SN, Wang JY, Huang LT. Epileptogenesis is increased in rats with neonatal isolation and early-life seizure and ameliorated by MK-801: a long-term MRI and histological study. Pediatr Res. 2009;66(4):441–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Ozlem A, Moshe SL, Galanopoulou AS. Early life status epilepticus and stress have distinct and sex-specific effects on learning, subsequent seizure outcomes, including anticonvulsant response to phenobarbital. CNS Neurosci Ther. 2014;21(2):181–92.Google Scholar
  92. 92.
    Leussis MP, Heinrichs SC. Quality of rearing guides expression of behavioral and neural seizure phenotypes in EL mice. Brain Res. 2009;1260:84–93.PubMedCrossRefGoogle Scholar
  93. 93.
    Gilby KL, Sydserff S, Patey AM, Thorne V, St-Onge V, Jans J, et al. Postnatal epigenetic influences on seizure susceptibility in seizure-prone versus seizure-resistant rat strains. Behav Neurosci. 2009;123(2):337–46.PubMedCrossRefGoogle Scholar
  94. 94.
    Ellis N, Upton D, Thompson P. Epilepsy and the family: a review of current literature. Seizure Europ J Epilepsy. 2000;9(1):22–30.CrossRefGoogle Scholar
  95. 95.
    Sheikh HI, Joanisse MF, Mackrell SM, Kryski KR, Smith HJ, Singh SM, et al. Links between white matter microstructure and cortisol reactivity to stress in early childhood: Evidence for moderation by parenting. Neuro Image Clin. 2014;6:77–85.Google Scholar
  96. 96.
    Maccari S, Morley-Fletcher S. Effects of prenatal restraint stress on the hypothalamus-pituitary-adrenal axis and related behavioural and neurobiological alterations. Psychoneuroendocrinology. 2007;32 Suppl 1:S10–5.PubMedCrossRefGoogle Scholar
  97. 97.
    McEwen BS. Sex, stress and the brain: interactive actions of hormones on the developing and adult brain. Climacteric. 2014;17(S2):18–25.PubMedCrossRefGoogle Scholar
  98. 98.
    Brunson KL, Eghbal-Ahmadi M, Bender R, Chen Y, Baram TZ. Long-term, progressive hippocampal cell loss and dysfunction induced by early-life administration of corticotropin-releasing hormone reproduce the effects of early-life stress. Proc Natl Acad Sci U S A. 2001;98(15):8856–61.PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    Hsu FC, Zhang GJ, Raol YS, Valentino RJ, Coulter DA, Brooks-Kayal AR. Repeated neonatal handling with maternal separation permanently alters hippocampal GABAA receptors and behavioral stress responses. Proc Natl Acad Sci U S A. 2003;100(21):12213–8.PubMedCentralPubMedCrossRefGoogle Scholar
  100. 100.
    Knuesel I, Chicha L, Britschgi M, Schobel SA, Bodmer M, Hellings JA, et al. Maternal immune activation and abnormal brain development across CNS disorders. Nat Rev Neurol. 2014;10(11):643–60.PubMedCrossRefGoogle Scholar
  101. 101.
    Vezzani A, Aronica E, Mazarati A, Pittman QJ. Epilepsy and brain inflammation. Exp Neurol. 2013;244:11–21.PubMedCrossRefGoogle Scholar
  102. 102.
    Bazak N, Kozlovsky N, Kaplan Z, Matar M, Golan H, Zohar J, et al. Pre-pubertal stress exposure affects adult behavioral response in association with changes in circulating corticosterone and brain-derived neurotrophic factor. Psychoneuroendocrinology. 2009;34(6):844–58.PubMedCrossRefGoogle Scholar
  103. 103.
    Howell BR, McCormack KM, Grand AP, Sawyer NT, Zhang X, Maestripieri D, et al. Brain white matter microstructure alterations in adolescent rhesus monkeys exposed to early life stress: associations with high cortisol during infancy. Biol Mood Anxiety Disord. 2013;3(1):1–14.CrossRefGoogle Scholar
  104. 104.
    Amini E, Rezaei M, Mohamed Ibrahim N, Golpich M, Ghasemi R, Mohamed Z, et al. A molecular approach to epilepsy management: from current therapeutic methods to preconditioning efforts. Mol Neurobiol. 2015;52(1):492–513.Google Scholar
  105. 105.
    Sorrells SF, Caso JR, Munhoz CD, Sapolsky RM. The stressed CNS: when glucocorticoids aggravate inflammation. Neuron. 2009;64(1):33–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Danzer SC. Depression, stress, epilepsy and adult neurogenesis. Exp Neurol. 2012;233(1):22–32.PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    McEwen BS, Eiland L, Hunter RG, Miller MM. Stress and anxiety: structural plasticity and epigenetic regulation as a consequence of stress. Neuropharmacology. 2012;62(1):3–12.PubMedCentralPubMedCrossRefGoogle Scholar
  108. 108.
    Schoenfeld TJ, Gould E. Stress, stress hormones, and adult neurogenesis. Exp Neurol. 2012;233(1):12–21.PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Magarinos AM, Verdugo JM, McEwen BS. Chronic stress alters synaptic terminal structure in hippocampus. Proc Natl Acad Sci U S A. 1997;94(25):14002–8.PubMedCentralPubMedCrossRefGoogle Scholar
  110. 110.
    Magalhaes AC, Holmes KD, Dale LB, Comps-Agrar L, Lee D, Yadav PN, et al. CRF Receptor1 regulates anxiety behaviour via sensitization of 5-HT2 receptor signaling. Nat Neurosci. 2010;13(5):622–9.PubMedCentralPubMedCrossRefGoogle Scholar
  111. 111.
    Anisman H, Merali Z, Stead JD. Experiential and genetic contributions to depressive- and anxiety-like disorders: clinical and experimental studies. Neurosci Biobehav Rev. 2008;32(6):1185–206.PubMedCrossRefGoogle Scholar
  112. 112.
    Privitera M, Walters M, Lee I, Polak E, Fleck A, Schwieterman D, et al. Characteristics of people with self-reported stress-precipitated seizures. Epilepsy Behav. 2014;41:74–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Baumeister D, Lightman SL, Pariante CM. The interface of stress and the HPA axis in behavioural phenotypes of mental illness. Curr Top Behav Neurosci. 2014;18:13–24.PubMedCrossRefGoogle Scholar
  114. 114.
    Lanteaume L, Bartolomei F, Bastien-Toniazzo M. How do cognition, emotion, and epileptogenesis meet? A study of emotional cognitive bias in temporal lobe epilepsy. Epilepsy Behav. 2009;15(2):218–24.PubMedCrossRefGoogle Scholar
  115. 115.
    Novakova B, Harris PR, Ponnusamy A, Reuber M. The role of stress as a trigger for epileptic seizures: a narrative review of evidence from human and animal studies. Epilepsia. 2013;54(11):1866–76.PubMedCrossRefGoogle Scholar
  116. 116.
    Byles JE, Robinson I, Banks E, Gibson R, Leigh L, Rodgers B, et al. Psychological distress and comorbid physical conditions: disease or disability? Depress Anxiety. 2014;31(6):524–32.PubMedCrossRefGoogle Scholar
  117. 117.
    Child A, Sanders J, Sigel P, Hunter MS. Meeting the psychological needs of cardiac patients: an integrated stepped-care approach within a cardiac rehabilitation setting. Br J Cardiol. 2010;17:175–9.Google Scholar
  118. 118.
    Surwit RS, van Tilburg MA, Zucker N, McCaskill CC, Parekh P, Feinglos MN, et al. Stress management improves long-term glycemic control in type 2 diabetes. Diabetes Care. 2002;25(1):30–4.PubMedCrossRefGoogle Scholar
  119. 119.
    Moss-Morris R, Dennison L, Landau S, Yardley L, Silber E, Chalder T. A randomized controlled trial of cognitive behavioral therapy (CBT) for adjusting to multiple sclerosis (the saMS trial): does CBT work and for whom does it work? J Consult Clin Psychol. 2013;81(2):251–62.PubMedCrossRefGoogle Scholar
  120. 120.
    NICE. Quality standard for the epilepsies in adults. Manchester: National Institute of Clinical Excellence; 2013. ISBN 978-1-4731-0048-0.Google Scholar
  121. 121.
    NICE. The epilepsies: the diagnosis and management of the epilepsies in adults and children in primary and secondary care: pharmacological update. London: 2012 1/25/2012. Report No.: Clinical Guideline 20.Google Scholar
  122. 122.
    Fountain NB, Van Ness PC, Swain-Eng R, Tonn S, Bever CT, For the American Academy of Neurology Epilepsy Measure Development Panel and the American Medical Association-Convened Physician Consortium for Performance Improvement Independent Measure Development Process. Quality improvement in neurology: AAN epilepsy quality measures: Report of the Quality Measurement and Reporting Subcommittee of the American Academy of Neurology. Neurology. 2011;76(1):94–9.Google Scholar
  123. 123.
    Muller B. Psychological approaches to the prevention and inhibition of nocturnal epileptic seizures: a meta-analysis of 70 case studies. Seizure. 2001;10(1):13–33.PubMedCrossRefGoogle Scholar
  124. 124.
    Tang V, Michaelis R, Kwan P. Psychobehavioral therapy for epilepsy. Epilepsy Behav. 2014;32:147–55.PubMedCrossRefGoogle Scholar
  125. 125.
    Ramaratnam S, Baker GA, Goldstein LH. Psychological treatments for epilepsy. Cochrane Database Syst Rev. 2008;3:1–32.Google Scholar
  126. 126.
    Tan SY, Bruni J. Cognitive-behavior therapy with adult patients with epilepsy: a controlled outcome study. Epilepsia. 1986;27(3):225–33.PubMedCrossRefGoogle Scholar
  127. 127.
    Dahl J, Melin L, Lund L. Effects of a contingent relaxation treatment program on adults with refractory epileptic seizures. Epilepsia. 1987;28(2):125–32.PubMedCrossRefGoogle Scholar
  128. 128.
    Schmid-Schonbein C. Improvement of seizure control by psychological methods in patients with intractable epilepsies. Seizure. 1998;7(4):261–70.PubMedCrossRefGoogle Scholar
  129. 129.
    McLaughlin DP, McFarland K. A randomized trial of a group based cognitive behavior therapy program for older adults with epilepsy: the impact on seizure frequency, depression and psychosocial well-being. J Behav Med. 2011;34(3):201–7.PubMedCrossRefGoogle Scholar
  130. 130.
    Chaytor N, Ciechanowski P, Miller JW, Fraser R, Russo J, Unutzer J, et al. Long-term outcomes from the PEARLS randomized trial for the treatment of depression in patients with epilepsy. Epilepsy Behav. 2011;20(3):545–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Michaelis R, Schonfeld W, Elsas SM. Trigger self-control and seizure arrest in the Andrews/Reiter behavioral approach to epilepsy: a retrospective analysis of seizure frequency. Epilepsy Behav. 2012;23(3):266–71.PubMedCentralPubMedCrossRefGoogle Scholar
  132. 132.
    Panjwani U, Selvamurthy W, Singh SH, Gupta HL, Thakur L, Rai UC. Effect of Sahaja yoga practice on seizure control & EEG changes in patients of epilepsy. Indian J Med Res. 1996;103:165–72.PubMedGoogle Scholar
  133. 133.
    Lundgren T, Dahl J, Melin L, Kies B. Evaluation of acceptance and commitment therapy for drug refractory epilepsy: a randomized controlled trial in South Africa--a pilot study. Epilepsia. 2006;47(12):2173–9.PubMedCrossRefGoogle Scholar
  134. 134.
    Lundgren T, Dahl J, Yardi N, Melin L. Acceptance and Commitment Therapy and yoga for drug-refractory epilepsy: a randomized controlled trial. Epilepsy Behav. 2008;13(1):102–8.PubMedCrossRefGoogle Scholar
  135. 135.
    Helgeson DC, Mittan R, Tan SY, Chayasirisobhon S. Sepulveda epilepsy education: the efficacy of a psychoeducational treatment program in treating medical and psychosocial aspects of epilepsy. Epilepsia. 1990;31(1):75–82.PubMedCrossRefGoogle Scholar
  136. 136.
    May TW, Pfafflin M. The efficacy of an educational treatment program for patients with epilepsy (MOSES): results of a controlled, randomized study. Modular service package epilepsy. Epilepsia. 2002;43(5):539–49.PubMedCrossRefGoogle Scholar
  137. 137.
    DiIorio C, Bamps Y, Walker ER, Escoffery C. Results of a research study evaluating WebEase, an online epilepsy self-management program. Epilepsy Behav. 2011;22(3):469–74.PubMedCrossRefGoogle Scholar
  138. 138.
    Egner T, Sterman MB. Neurofeedback treatment of epilepsy: from basic rationale to practical application. Expert Rev Neurother. 2006;6(2):247–57.PubMedCrossRefGoogle Scholar
  139. 139.
    Rockstroh B, Elbert T, Birbaumer N, Wolf P, Duchting-Roth A, Reker M, et al. Cortical self-regulation in patients with epilepsies. Epilepsy Res. 1993;14(1):63–72.PubMedCrossRefGoogle Scholar
  140. 140.
    Nagai Y, Goldstein LH, Fenwick PB, Trimble MR. Clinical efficacy of galvanic skin response biofeedback training in reducing seizures in adult epilepsy: a preliminary randomized controlled study. Epilepsy Behav. 2004;5(2):216–23.PubMedCrossRefGoogle Scholar
  141. 141.
    Tan G, Thornby J, Hammond DC, Strehl U, Canady B, Arnemann K, et al. Meta-analysis of EEG biofeedback in treating epilepsy. Clin EEG Neurosci. 2009;40(3):173–9.PubMedCrossRefGoogle Scholar
  142. 142.
    Polak EL, Privitera MD, Lipton RB, Haut SR. Behavioral intervention as an add-on therapy in epilepsy: designing a clinical trial. Epilepsy Behav. 2012;25(4):505–10.PubMedCrossRefGoogle Scholar
  143. 143.
    Morris GL, Gloss D, Buchhalter J, Mack KJ, Nickels K, Harden C. Evidence-based guideline update: vagus nerve stimulation for the treatment of epilepsy: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2013;81(16):1453–9.PubMedCentralPubMedCrossRefGoogle Scholar
  144. 144.
    Clancy JA, Mary DA, Witte KK, Greenwood JP, Deuchars SA, Deuchars J. Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul. 2014;7(6):871–7.PubMedCrossRefGoogle Scholar
  145. 145.
    Kraus T, Hoesl K, Kiess O, Schanze A, Kornhuber J, Forster C. BOLD fMRI deactivation of limbic and temporal brain structures and mood enhancing effect by transcutaneous vagus nerve stimulation. J Neural Transm. 2007;114(11):1485–93.PubMedCrossRefGoogle Scholar
  146. 146.
    Reddy DS. Neurosteroids: endogenous role in the human brain and therapeutic potentials. Prog Brain Res. 2010;186:113–37.PubMedCentralPubMedCrossRefGoogle Scholar
  147. 147.
    Sripada RK, Welsh RC, Marx CE, Liberzon I. The neurosteroids allopregnanolone and dehydroepiandrosterone modulate resting-state amygdala connectivity. Hum Brain Mapp. 2014;35(7):3249–61.PubMedCrossRefGoogle Scholar
  148. 148.
    Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS. Progress report on new antiepileptic drugs: a summary of the eleventh Eilat conference (EILAT XI). Epilepsy Res. 2013;103(1):2–30.PubMedCrossRefGoogle Scholar
  149. 149.
    Gupta R, Appleton R. Corticosteroids in the management of the paediatric epilepsies. Arch Dis Child. 2005;90(4):379–84.PubMedCentralPubMedCrossRefGoogle Scholar
  150. 150.
    Maguire J, Salpekar JA. Stress, seizures, and hypothalamic-pituitary-adrenal axis targets for the treatment of epilepsy. Epilepsy Behav. 2013;26(3):352–62.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Epilepsy GroupAtkinson Morley Regional Neuroscience Centre, St. George’s University Hospitals NHS Foundation TrustLondonUK
  2. 2.Institute of Biomedical and Medical EducationSt. George’s University of LondonLondonUK

Personalised recommendations