Advertisement

Abstract

Association between epilepsy and dementia has been described centuries ago; still many neurobiological, clinical, and therapeutic issues remain unclear. This comorbidity is currently in the focus of experimental, translational, and clinical research.

There are similarities (as well as differences) between patients with dementias and those with temporal lobe epilepsy (TLE), and between animal models of Alzheimer disease (AD) and TLE. Seizures in the human temporal lobe transiently impair cognition and steadily damage hippocampal circuitry, leading to progressive memory loss; many mechanisms involved in AD influence excitability and cause seizures.

On one hand, there is a multifactorial cognitive deficit in patients with chronic epilepsy; it is driven by the impact of the underlying etiology, the effects of recurrent seizures, adverse effects of antiepileptic drugs (AEDs), and psychosocial issues.

On the other hand, seizures are frequently observed in patients with dementia. The incidence of seizures among patients with dementia varies with the etiology of the dementing illness.

The proper choice of AEDs is essential in symptomatic treatment of seizures in patients with dementia; possible risks and benefits of the drug for the elderly patient should be noted.

Better understanding of the converging neurobiological pathways of epilepsy and dementia could enrich the therapeutic armamentarium and allow improved control of both conditions, ameliorate related abnormalities and potentially modify disease progression.

Keywords

Epilepsy Seizures Cognitive decline Alzheimer’s disease Vascular dementia Apolipoprotein E β-amyloid Hippocampal sclerosis Excitotoxicity Antiepileptic drugs 

Notes

Acknowledgments

The author is sincerely grateful to Prof. Natalia Gulyaeva and Drs. Oxana Danilenko and Mikhail Zinchuk for their invaluable assistance in preparation of this chapter.

References

  1. 1.
    Berrios G. Dementia: historical overview. In: Burns A, O’Brien J, Ames D, editors. Dementia. 3rd ed. London: Hodder Arnold; 2005. p. 3–15. doi: 10.1201/b13239-3.Google Scholar
  2. 2.
    Willis T. Practice of physick. London: T. Dring, C. Harper, and J. Leigh; 1684. p. 209–14.Google Scholar
  3. 3.
    Diderot D, d’Alembert J. Encyclopédie ou dictionnaire raisonné des sciences, des arts et des métiers [Encyclopedia or systematic dictionary of the sciences, arts and crafts]. Paris: Briasson, David, Le Breton, Durand; 1765. p. 807–8.Google Scholar
  4. 4.
    Fisher RS. Epilepsy from the patient’s perspective: review of results of a community-based survey. Epilepsy Behav. 2000;1:9–14. doi: 10.1006/ebeh.2000.0107.CrossRefGoogle Scholar
  5. 5.
    Brooks-Kayal A. Molecular mechanisms of cognitive and behavioral comorbidities of epilepsy in children. Epilepsia. 2011;52 Suppl 1:13–20. doi: 10.1111/j.1528-1167.2010.02906.x.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Carreño M, Donaire A, Sánchez-Carpintero R. Cognitive disorders associated with epilepsy: diagnosis and treatment. Neurologist. 2008;14 Suppl 1:26–34. doi: 10.1097/01.nrl.0000340789.15295.8f.CrossRefGoogle Scholar
  7. 7.
    Aldenkamp AP. Antiepileptic drug treatment and epileptic seizures – effects on cognitive function. In: Trimble M, Schmitz B, editors. The neuropsychiatry of epilepsy. New York: Cambridge University Press; 2002. p. 256–67. doi: 10.1017/cbo9780511544354.017.CrossRefGoogle Scholar
  8. 8.
    Lin JJ, Mula M, Hermann BP. Uncovering the neurobehavioural comorbidities of epilepsy over the lifespan. Lancet. 2012;380(9848):1180–92. doi: 10.1016/S0140-6736(12)61455-X.PubMedCrossRefGoogle Scholar
  9. 9.
    Korczyn AD, Schachter SC, Brodie MJ, Dalal SS, Engel JJ, Guekht A, et al. Epilepsy, cognition, and neuropsychiatry (Epilepsy, Brain, and Mind, part 2). Epilepsy Behav. 2013;28:283–302. doi: 10.1016/j.yebeh.2013.03.012.PubMedCrossRefGoogle Scholar
  10. 10.
    Taylor J, Kolamunnage-Dona R, Marson AG, Smith PE, Aldenkamp AP, Baker GA. Patients with epilepsy: cognitively compromised before the start of antiepileptic drug treatment? Epilepsia. 2010;51:48–56. doi: 10.1111/j.1528-1167.2009.02195.x.PubMedCrossRefGoogle Scholar
  11. 11.
    Helmstaedter C, Fritz NE, Hoffmann J, Elger CE. Impact of newly diagnosed and untreated symptomatic/cryptogenic epilepsy on cognition. Epilepsia. 2005;46:152.CrossRefGoogle Scholar
  12. 12.
    Aniol VA, Ivanova-Dyatlova AY, Keren O, Guekht AB, Sarne Y, Gulyaeva NV. A single pentylenetetrazole-induced clonic-tonic seizure episode is accompanied by a slowly developing cognitive decline in rats. Epilepsy Behav. 2013;26:196–202. doi: 10.1016/j.yebeh.2012.12.006.PubMedCrossRefGoogle Scholar
  13. 13.
    Hauser WA, Morris ML, Heston LL, Anderson VE. Seizures and myoclonus in patients with Alzheimer’s disease. Neurology. 1986;36:1226–30. doi: 10.1212/wnl.36.9.1226.PubMedCrossRefGoogle Scholar
  14. 14.
    Romanelli MF, Morris JC, Ashkin K, Coben LA. Advanced Alzheimer’s disease is a risk factor for late-onset seizures. Arch Neurol. 1990;47:847–50. doi: 10.1001/archneur.1990.00530080029006.PubMedCrossRefGoogle Scholar
  15. 15.
    Hesdorffer D, Hauser WA, Annegers JF, et al. Dementia and adult-onset unprovoked seizures. Neurology. 1996;46:727–30. doi: 10.1212/wnl.46.3.727.PubMedCrossRefGoogle Scholar
  16. 16.
    Amatniek JC, Hauser WA, DelCastillo-Castaneda C, Jacobs DM, Marder K, Bell K, Albert M, Brandt J, Stern Y. Incidence and predictors of seizures in patients with Alzheimer’s disease. Epilepsia. 2006;47:867–72. doi: 10.1111/j.1528-1167.2006.00554.x.PubMedCrossRefGoogle Scholar
  17. 17.
    Scarmeas N, Honig LS, Choi H, Cantero J, Brandt J, Blacker D, Albert M, Amatniek JC, Marder K, Bell K, Hauser WA, Stern Y. Seizures in Alzheimer disease: who, when, and how common? Arch Neurol. 2009;66:992–7. doi: 10.1001/archneurol.2009.130.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Pohlmann-Eden B, Eden MA. Dementia and epilepsy. In: Trimble MR, Schmitz B, editors. The neuropsychiatry of epilepsy. New York: Kenbridge University Press; 2011. p. 46–56. doi: 10.1017/cbo9780511977145.006.CrossRefGoogle Scholar
  19. 19.
    Bull MJ, the Committee on Genetics. Health supervision for children with Down syndrome. Pediatrics. 2011;128:393–406. doi: 10.1542/peds.2011-1605.PubMedCrossRefGoogle Scholar
  20. 20.
    Thiel RJ, Fowkes SW. Down syndrome and epilepsy: a nutritional connection? Med Hypotheses. 2004;62:35–44. doi: 10.1016/s0306-9877(03)00294-9.PubMedCrossRefGoogle Scholar
  21. 21.
    Sangani M, Shahid A, Amina S, Koubeissi M. Improvement of myoclonic epilepsy in Down syndrome treated with levetiracetam. Epileptic Disord. 2010;12:151–4. doi: 10.1684/epd.2010.0306.PubMedGoogle Scholar
  22. 22.
    Ferlazzo E, Adjien CK, Guerrini R, Calarese T, Crespel A, Elia M, et al. Lennox-Gastaut syndrome with late- onset and prominent reflex seizures in trisomy 21 patients. Epilepsia. 2009;50:1587–95. doi: 10.1111/j.1528-1167.2008.01944.x.PubMedCrossRefGoogle Scholar
  23. 23.
    Barca D, Tarta-Arsene O, Dica A, Iliescu C, Budisteanu M, Motoescu C, Butoianu N, et al. Intellectual disability and epilepsy in Down syndrome. Maedica (Buchar). 2014;9:344–50.Google Scholar
  24. 24.
    McVicker RW, Shanks OE, McClelland RJ. Prevalence and associated features of epilepsy in adults with Down’s syndrome. Br J Psychiatry. 1994;164:528–32. doi: 10.1192/bjp.164.4.528.PubMedCrossRefGoogle Scholar
  25. 25.
    Frey LC, Ringel SP, Filley CM. The natural history of cognitive dysfunction in late-onset GM2 gangliosidosis. Arch Neurol. 2005;62:989–94. doi: 10.1001/archneur.62.6.989.PubMedCrossRefGoogle Scholar
  26. 26.
    Shahwan A, Farrell M, Delanty N. Progressive myoclonic epilepsies: a review of genetic and therapeutic aspects. Lancet Neurol. 2005;4:239–48. doi: 10.1016/s1474-4422(05)70043-0.PubMedCrossRefGoogle Scholar
  27. 27.
    Camicioli R. Differentiation from non-Alzheimer dementia. In: Gauthier S, editor. Clinical diagnosis and management of Alzheimer’s disease. 3rd ed. Abingdon: Informa Healthcare; 2006. p. 53–66. doi: 10.3109/9780203931714-8.CrossRefGoogle Scholar
  28. 28.
    Hendrie HC. Epidemiology of Dementia and Alzheimers Disease. J Geriatr Psychiatry. 1998;6 Suppl 1:3–18.CrossRefGoogle Scholar
  29. 29.
    Luhdorf K, Jensen LK, Plesner AM. Etiology of seizures in the elderly. Epilepsia. 1986;27:458–63. doi: 10.1111/j.1528-1157.1986.tb03567.x.PubMedCrossRefGoogle Scholar
  30. 30.
    Hauser WA, Annegers JF, Kurland LT. Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935–1984. Epilepsia. 1993;34:453–68. doi: 10.1111/j.1528-1157.1993.tb02586.x.PubMedCrossRefGoogle Scholar
  31. 31.
    Annegers JF, Hauser WA, Lee JR, Rocca WA. Secular trends and birth cohort effects in unprovoked seizures: Rochester, Minnesota 1935–1984. Epilepsia. 1995;36:575–9. doi: 10.1111/j.1528-1157.1995.tb02570.x.PubMedCrossRefGoogle Scholar
  32. 32.
    Hussain SA, Haut SR, Lipton RB, Derby C, Markowitz SY, Shinnar S. Incidence of epilepsy in a racially diverse, community-dwelling, elderly cohort: results from the Einstein aging study. Epilepsy Res. 2006;71:195–205. doi: 10.1016/j.eplepsyres.2006.06.018.PubMedCrossRefGoogle Scholar
  33. 33.
    Pugh MJ, Knoefel JE, Mortensen EM, Amuan ME, Berlowitz DR, Van Cott AC. New-onset epilepsy risk factors in older veterans. J Am Geriatr Soc. 2009;57:237–42. doi: 10.1111/j.1532-5415.2008.02124.x.PubMedCrossRefGoogle Scholar
  34. 34.
    Blocq P, Marinesco G. Sur les lésions et la pathogénie de l’épilepsie dite essentielle. La Semaine médicale. 1892;12:445–6.Google Scholar
  35. 35.
    Alzheimer A. Über eine eigenartige. Erkrankung der Hirnrinde. Allgemeine. Zeitschrift fűr Psychiatrie. 1907;64:146–8.Google Scholar
  36. 36.
    Buda O, Arsene D, Ceausu M, Dermengiu D, Curca GC. Georges Marinesco and the early research in neuropathology. Neurology. 2009;72:88–91. doi: 10.1212/01.wnl.0000338626.93425.74.PubMedCrossRefGoogle Scholar
  37. 37.
    Mandell AM, Green RC. Alzheimer’ s disease. In: Budson AE, Kowall NW, editors. The handbook of Alzheimer’s disease and other dementias. 1st ed. Oxford: Blackwell Publishing Ltd; 2011. p. 1–91. doi: 10.1002/9781444344110.ch1.CrossRefGoogle Scholar
  38. 38.
    Pandis D, Scarmeas N. Seizures in Alzheimer disease: clinical and epidemiological data. Epilepsy Curr. 2012;12:184–7. doi: 10.5698/1535-7511-12.5.184.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Larner AJ. Epileptic seizures in AD patients. Neuromolecular Med. 2010;12:71–7. doi: 10.1007/s12017-009-8076-z.PubMedCrossRefGoogle Scholar
  40. 40.
    Mendez M, Lim G. Seizures in elderly patients with dementia: epidemiology and management. Drugs Aging. 2003;20:791–803. doi: 10.2165/00002512-200320110-00001.PubMedCrossRefGoogle Scholar
  41. 41.
    Friedman D, Honig LS, Scarmeas N. Seizures and epilepsy in Alzheimer’s disease. CNS Neurosci Ther. 2012;18:285–94. doi: 10.1111/j.1755-5949.2011.00251.x.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Hamed SA. Atherosclerosis in epilepsy: its causes and implications. Epilepsy Behav. 2014;41:290–6. doi: 10.1016/j.yebeh.2014.07.003.PubMedCrossRefGoogle Scholar
  43. 43.
    Imfeld P, Bodmer M, Schuerch M, Jick SS, Meier CR. Seizures in patients with Alzheimer’s disease or vascular dementia: a population-based nested case–control analysis. Epilepsia. 2013;54:700–7. doi: 10.1111/epi.12045.PubMedCrossRefGoogle Scholar
  44. 44.
    Hommet C, Mondon K, Camus V, De Toffol B, Constans T. Epilepsy and dementia in the elderly. Dement Geriatr Cogn Disord. 2008;25:293–300. doi: 10.1159/000119103.PubMedCrossRefGoogle Scholar
  45. 45.
    Doran M, Harvie AK, Larner AJ. Antisocial behaviour orders: the need to consider underlying neuropsychiatric disease. Int J Clin Pract. 2006;60:861–2. doi: 10.1111/j.1742-1241.2006.01008.x.PubMedCrossRefGoogle Scholar
  46. 46.
    Palop JJ, Mucke L. Epilepsy and cognitive impairments in Alzheimer disease. Arch Neurol. 2009;66:435. doi: 10.1001/archneurol.2009.15.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Palop JJ, Mucke L. Amyloid-β induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci. 2010;13:812–8. doi: 10.1038/nn.2583.PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Waldemar G, Dubois B, Emre M, Georges J, McKeith IG, Rossor M, et al. Alzheimer’s disease and other disorders associated with dementia. In: Hughes R, Brainin M, Gilhus NE, editors. European handbook of neurological management. Oxford: Blackwell Publishing; 2006. p. 266–98. doi: 10.1002/9780470753279.ch19.CrossRefGoogle Scholar
  49. 49.
    Jacobs D, Sano M, Marder K, Bell K, Bylsma F, Lafleche G, et al. Age at onset of Alzheimer’s disease: relation to pattern of cognitive dysfunction and rate of decline. Neurology. 1994;44:1215–20. doi: 10.1212/wnl.44.7.1215.PubMedCrossRefGoogle Scholar
  50. 50.
    Tunde-Ayinmode MF, Abiodun OA, Ajiboye PO, Buhari OI, Sanya EO. Prevalence and clinical implications of psychopathology in adults with epileps seen in an outpatient clinic in Nigeria. Gen Hosp Psychiatry. 2014;36:703–8. doi: 10.1016/j.genhosppsych.2014.08.009.PubMedCrossRefGoogle Scholar
  51. 51.
    Ponomareva NV, Korovaitseva GI, Rogaev EI. EEG alterations in non-demented individuals related to apolipoprotein E genotype and to risk of Alzheimer disease. Neurobiol Aging. 2008;29:819–27. doi: 10.1016/j.neurobiolaging.2006.12.019.PubMedCrossRefGoogle Scholar
  52. 52.
    Bernardi S, Scaldaferri N, Vanacore N, Trebbastoni A, Francia A, D’Amico A, Prencipe M. Seizures in Alzheimer’s disease: a retrospective study of a cohort of outpatients. Epileptic Disord. 2010;12:16–21.PubMedGoogle Scholar
  53. 53.
    Sherzai D, Losey T, Vega S, Sherzai A. Seizures and dementia in the elderly: Nationwide Inpatient Sample 1999–2008. Epilepsy Behav. 2014;36:53–6. doi: 10.1016/j.yebeh.2014.04.015.PubMedCrossRefGoogle Scholar
  54. 54.
    Annegers JF, Hauser WA, Lee JR, Rocca WA. Incidence of acute symptomatic seizures in Rochester, Minnesota, 1935–1984. Epilepsia. 1995;36:327–33. doi: 10.1111/j.1528-1157.1995.tb01005.x.PubMedCrossRefGoogle Scholar
  55. 55.
    Cleary P, Shorvon S, Tallis R. Late-onset seizures as a predictor of subsequent stroke. Lancet. 2004;363:1184–6. doi: 10.1016/s0140-6736(04)15946-1.PubMedCrossRefGoogle Scholar
  56. 56.
    Pendlebury ST. Stroke-related dementia: rates, risk factors and implications for future research. Maturitas. 2009;64:165–71. doi: 10.1016/j.maturitas.2009.09.010.PubMedCrossRefGoogle Scholar
  57. 57.
    Chang CS, Liao CH, Lin CC, Lane HY, Sung FC, Kao CH. Patients with epilepsy are at an increased risk of subsequent stroke: a population-based cohort study. Seizure. 2014;23:377–81. doi: 10.1016/j.seizure.2014.02.007.PubMedCrossRefGoogle Scholar
  58. 58.
    Chabriat H, Vahedi K, Iba-Zizen MT, et al. Clinical spectrum of CADASIL: a study of 7 families. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Lancet. 1995;346:934–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Dichgans M. CADASIL: a monogenic condition causing stroke and subcortical vascular dementia. Cerebrovasc Dis. 2002;13 Suppl 2:37–41. doi: 10.1159/000049148.PubMedCrossRefGoogle Scholar
  60. 60.
    Kalimo H, Ruchoux MM, Viitanen M, Kalaria RN. CADASIL: a common form of hereditary arteriopathy causing brain infarcts and dementia. Brain Pathol. 2002;12:371–84. doi: 10.1111/j.1750-3639.2002.tb00451.x.PubMedCrossRefGoogle Scholar
  61. 61.
    Román G. Therapeutic strategies for vascular dementia. In: Burns A, O’Brien J, Ames D, editors. Dementia. 3rd ed. London: CRC Press; 2005. p. 574–600. doi: 10.1201/b13239-83.Google Scholar
  62. 62.
    Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, et al. Notch3 mutations in CADASIL, a hereditary adult onset condition causing stroke and dementia. Nature. 1996;383:707–10. doi: 10.1038/383707a0.PubMedCrossRefGoogle Scholar
  63. 63.
    Dichgans M, Mayer M, Uttner I, Brüning R, Müller-Höcker J, Rungger G, et al. The phenotypic spectrum of CADASIL: clinical findings in 102 cases. Ann Neurol. 1998;44:731–9. doi: 10.1002/ana.410440506.PubMedCrossRefGoogle Scholar
  64. 64.
    Desmond DW, Moroney JT, Lynch T, Chan SS, Chin S, Mohr JP. The natural history of CADASIL: a pooled analysis of previously published cases. Stroke. 1999;30:1230–3. doi: 10.1161/01.str.30.6.1230.PubMedCrossRefGoogle Scholar
  65. 65.
    Haan J, Lesnik Oberstein SAJ, Ferrari MD. Epilepsy in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Cerebrovasc Dis. 2007;24:316–7. doi: 10.1159/000106518.PubMedCrossRefGoogle Scholar
  66. 66.
    Velizarova R, Mourand I, Serafini A, Crespel A, Gelisse P. Focal epilepsy as first symptom in CADASIL. Seizure. 2011;20:502–4. doi: 10.1016/j.seizure.2011.02.006.PubMedCrossRefGoogle Scholar
  67. 67.
    Valko PO, Siccoli MM, Schiller A, Wieser HG, Jung HH. Non-convulsive status epilepticus causing focal neurological deficits in CADASIL. BMJ Case Rep. 2009. doi: 10.1136/bcr.07.2008.0529.Google Scholar
  68. 68.
    Cordonnier C, Henon H, Derambure P, Pasquier F, Leys D. Influence of pre-existing dementia on the risk of post-stroke epileptic seizures. J Neurol Neurosurg Psychiatry. 2005;76:1649–53. doi: 10.1136/jnnp.2005.064535.PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Cordonnier C, Henon H, Derambure P, Pasquier F, Leys D. Early epileptic seizures after stroke are associated with increased risk of new-onset dementia. J Neurol Neurosurg Psychiatry. 2007;78:514–6. doi: 10.1136/jnnp.2006.105080.PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    De Reuck J, Van Maele G. Cognitive impairment and seizures in patients with lacunar strokes. Eur Neurol. 2009;61:159–63. doi: 10.1159/000186507.PubMedCrossRefGoogle Scholar
  71. 71.
    Ansari R, Mahta A, Mallack E, Luo JJ. Hyperhomocysteinemia and neurologic disorders: a review. J Clin Neurol. 2014;10:281–8. doi: 10.3988/jcn.2014.10.4.281.PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Golarai G, Greenwood AC, Feeney DM, Connor JA. Physiological and structural evidence for hippocampal involvement in persistent seizure susceptibility after traumatic brain injury. J Neurosci. 2001;21:8523–37.PubMedGoogle Scholar
  73. 73.
    Pauli E, Hildebrandt M, Romstöck J, Stefan H, Blümcke I. Deficient memory acquisition in temporal lobe epilepsy is predicted by hippocampal granule cell loss. Neurology. 2006;67:1383–9. doi: 10.1212/01.wnl.0000239828.36651.73.PubMedCrossRefGoogle Scholar
  74. 74.
    Ng SK, Hauser WA, Brust J, Susser M. Hypertension and the risk of new-onset unprovoked seizures. Neurology. 1993;43:425–8. doi: 10.1212/wnl.43.2.425.PubMedCrossRefGoogle Scholar
  75. 75.
    Conrad J, Pawlowski M, Dogan MJ, Kovac S, Ritter MA, Evers S. Seizures after cerebrovascular events: risk factors and clinical features. Seizure. 2013;22:275–82. doi: 10.1016/j.seizure.2013.01.014.PubMedCrossRefGoogle Scholar
  76. 76.
    Noebels J. A perfect storm: converging paths of epilepsy and Alzheimer’s dementia intersect in the hippocampal formation. Epilepsia. 2011;52 Suppl 1:39–46. doi: 10.1111/j.1528-1167.2010.02909.x.PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Prevett M, Enevoldson TP, Duncan JS. Adult onset acid maltase deficiency associated with epilepsy and dementia: a case report. J Neurol Neurosurg Psychiatry. 1992;55:509. doi: 10.1136/jnnp.55.6.509.PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Larner AJ. Presenilin-1 mutation Alzheimer’s disease: a genetic epilepsy syndrome? Epilepsy Behav. 2011;21:20–2. doi: 10.1016/j.yebeh.2011.03.022.PubMedCrossRefGoogle Scholar
  79. 79.
    Kalaria RN, Maestre GE, Arizaga R, Friedland RP, Galasko D, Hall K, et al. Alzheimer’s disease and vascular dementia in developing countries: prevalence, management, and risk factors. Lancet Neurol. 2008;7:812–26. doi: 10.1016/S1474-4422(08)70169-8.PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Korczyn AD. Mixed dementia--the most common cause of dementia. Ann N Y Acad Sci. 2002;977:129–34. doi: 10.1111/j.1749-6632.2002.tb04807.x.PubMedCrossRefGoogle Scholar
  81. 81.
    Zekry D, Duyckaerts C, Hauw JJ. Mixed dementia: a neuropathologic point od view. Psychol Neuropsychiatr Vieil. 2005;3:251–9.PubMedGoogle Scholar
  82. 82.
    Vossel KA, Beagle AJ, Rabinovici GD, Shu H, Lee SE, Naasan G, et al. Seizures and epileptiform activity in the early stages of Alzheimer disease. JAMA Neurol. 2013;70:1158–66. doi: 10.1001/jamaneurol.2013.136.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Rabinowicz AL, Starkstein SE, Leiguarda RC, Coleman AE. Transient epileptic amnesia in dementia: a treatable unrecognized cause of episodic amnestic wandering. Alzheimer Dis Assoc Disord. 2000;14:231–3. doi: 10.1097/00002093-200010000-00008.PubMedCrossRefGoogle Scholar
  84. 84.
    Sinforiani E, Manni R, Bernasconi L, Banchieri LM, Zucchella C. Memory disturbances and temporal lobe epilepsy simulating Alzheimer’s disease: a case report. Funct Neurol. 2003;8:39–41.Google Scholar
  85. 85.
    Palop JJ, Chin J, Roberson ED, Wang J, Thwin MT, Bien-Ly N, et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron. 2007;55:697–711. doi: 10.1016/j.neuron.2007.07.025.PubMedCrossRefGoogle Scholar
  86. 86.
    Velez-Pardo C, Arellano JI, Cardona-Gomez P, Jimenez Del Rio M, Lopera F, De Felipe J. CA1 hippocampal neuronal loss in familial Alzheimer’s disease presenilin-1 E280 Amutation is related to epilepsy. Epilepsia. 2004;45:751–6. doi: 10.1111/j.0013-9580.2004.55403.x.PubMedCrossRefGoogle Scholar
  87. 87.
    Hatanpaa KJ, Raisanen JM, Herndon E, Burns DK, Foong C, Habib AA, et al. Hippocampal sclerosis in dementia, epilepsy, and ischemic injury: differential vulnerability of hippocampal subfields. J Neuropathol Exp Neurol. 2014;73:136–42. doi: 10.1097/OPX.0000000000000170.PubMedCentralPubMedGoogle Scholar
  88. 88.
    Timsit S, Rivera S, Ouaghi P, Guischard F, Tremblay E, Ben-Ari Y, Khrestchatisky M. Increased cyclin D1 in vulnerable neurons in the hippocampus after ischaemia and epilepsy: a modulator of in vivo programmed cell death? Eur J Neurosci. 1999;11:263–78. doi: 10.1046/j.1460-9568.1999.00434.x.PubMedCrossRefGoogle Scholar
  89. 89.
    Szabo K, Förster A, Gass A. Conventional and diffusion-weighted MRI of the hippocampus. Front Neurol Neurosci. 2014;34:71–84. doi: 10.1159/000357925.PubMedCrossRefGoogle Scholar
  90. 90.
    Bandopadhyay R, Liu JY, Sisodiya SM, Thom M. A comparative study of the dentate gyrus in hippocampal sclerosis in epilepsy and dementia. Neuropathol Appl Neurobiol. 2014;40:177–90. doi: 10.1111/nan.12087.PubMedCentralPubMedCrossRefGoogle Scholar
  91. 91.
    Counts SE, Alldred MJ, Che S, Ginsberg SD, Mufson EJ. Synaptic gene dysregulation within hippocampal CA1 pyramidal neurons in mild cognitive impairment. Neuropharmacology. 2014;79:172–9. doi: 10.1016/j.neuropharm.2013.10.018.PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Merino-Serrais P, Benavides-Piccione R, Blazquez-Llorca L, Kastanauskaite A, Rábano A, Avila J, et al. The influence of phospho-τ on dendritic spines of cortical pyramidal neurons in patients with Alzheimer’s disease. Brain. 2013;136:1913–28. doi: 10.1093/brain/awt088.PubMedCentralPubMedCrossRefGoogle Scholar
  93. 93.
    Kerchner GA, Holbrook K. Novel presenilin-1 Y159F sequence variant associated with early-onset alzheimer’s disease. Neurosci Lett. 2012;531:142–4. doi: 10.1016/j.neulet.2012.10.037.Google Scholar
  94. 94.
    Korf ES, Wahlund LO, Visser PJ, Scheltens P. Medial temporal lobe atrophy on MRI predicts dementia in patients with mild cognitive impairment. Neurology. 2004;63:94–100. doi: 10.1212/01.wnl.0000133114.92694.93.PubMedCrossRefGoogle Scholar
  95. 95.
    Bernasconi N, Bernasconi A, Andermann F, Dubeau F, Feindel W, Reutens DC. Entorhinal cortex in temporal lobe epilepsy: a quantitative MRI study. Neurology. 1999;52:1870–6. doi: 10.1212/wnl.52.9.1870.PubMedCrossRefGoogle Scholar
  96. 96.
    Bernhardt BC, Hong SJ, Bernasconi A, Bernasconi N. Magnetic resonance imaging pattern learning in temporal lobe epilepsy: classification and prognostics. Ann Neurol. 2015;77:436–46. doi: 10.1002/ana.24341.PubMedCrossRefGoogle Scholar
  97. 97.
    Peng B, Wu L, Zhang L, Chen Y. The relationship between hippocampal volumes and nonverbal memory in patients with medial temporal lobe epilepsy. Epilepsy Res. 2014;108:1839–44. doi: 10.1016/j.eplepsyres.2014.09.007.PubMedCrossRefGoogle Scholar
  98. 98.
    Barron DS, Tandon N, Lancaster JL, Fox PT. Thalamic structural connectivity in medial temporal lobe epilepsy. Epilepsia. 2014;55:50–5. doi: 10.1111/epi.12637.CrossRefGoogle Scholar
  99. 99.
    Paterson A, Winder J, Bell KE, McKinstry CS. An evaluation of how MRI is used as a pre-operative screening investigation in patients with temporal lobe epilepsy. Clin Radiol. 1998;53:353–6. doi: 10.1016/s0009-9260(98)80008-1.PubMedCrossRefGoogle Scholar
  100. 100.
    Salmenperä T, Kälviäinen R, Partanen K, Pitkänen A. Quantitative MRI volumetry of the entorhinal cortex in temporal lobe epilepsy. Seizure. 2000;9:208–15. doi: 10.1053/seiz.1999.0373.PubMedCrossRefGoogle Scholar
  101. 101.
    Keller SS, Roberts N. Voxel-based morphometry of temporal lobe epilepsy: an introduction and review of the literature. Epilepsia. 2008;49:741–57. doi: 10.1111/j.1528-1167.2007.01485.x.PubMedCrossRefGoogle Scholar
  102. 102.
    Yang Y, Kinney GA, Spain WJ, Breitner JC, Cook DG. Presenilin-1 and intracellular calcium stores regulate neuronal glutamate uptake. J Neurochem. 2004;88:1361–72. doi: 10.1046/j.1471-4159.2003.02279.x.PubMedCrossRefGoogle Scholar
  103. 103.
    Eid T, Behar K, Dhaher R, Bumanglag AV, Lee TSW. Roles of glutamine synthetase inhibition in epilepsy. Neurochem Res. 2012;37:2339–50. doi: 10.1007/s11064-012-0766-5.PubMedCentralPubMedCrossRefGoogle Scholar
  104. 104.
    Traynelis SF, Dingledine R, McNamara JO, Butler L, Rigsbee L. Effect of kindling on potassium-induced electrographic seizures in vitro. Neurosci Lett. 1989;105:326–32. doi: 10.1016/0304-3940(89)90642-3.PubMedCrossRefGoogle Scholar
  105. 105.
    Tamminga CA, Southcott S, Sacco C, Wagner AD, Ghose S. Glutamate dysfunction in hippocampus: relevance of dentate gyrus and CA3 signaling. Schizophr Bull. 2012;38:927–35. doi: 10.1093/schbul/sbs062.PubMedCentralPubMedCrossRefGoogle Scholar
  106. 106.
    Fujita S, Toyoda I, Thamattoor AK, Buckmaster PS. Preictal activity of subicular, CA1, and dentate gyrus principal neurons in the dorsal hippocampus before spontaneous seizures in a rat model of temporal lobe epilepsy. J Neurosci. 2014;34:16671–87. doi: 10.1523/JNEUROSCI.0584-14.2014.PubMedCentralPubMedCrossRefGoogle Scholar
  107. 107.
    Wan P, Wang S, Zhang Y, Lv J, Jin QH. Involvement of dopamine D1 receptors of the hippocampal dentate gyrus in spatial learning and memory deficits in a rat model of vascular dementia. Pharmazie. 2014;69:709–10.PubMedGoogle Scholar
  108. 108.
    Koeller HB, Ross ME, Glickstein SB. Cyclin D1 in excitatory neurons of the adult brain enhances kainate-induced neurotoxicity. Neurobiol Dis. 2008;31:230–41. doi: 10.1016/j.nbd.2008.04.010.PubMedCentralPubMedCrossRefGoogle Scholar
  109. 109.
    Freeman RS, Estus S, Johnson Jr EM. Analysis of cell cycle-related gene expression in postmitotic neurons: selective induction of Cyclin D1 during programmed cell death. Neuron. 1994;12:343–55. doi: 10.1016/0896-6273(94)90276-3.PubMedCrossRefGoogle Scholar
  110. 110.
    Yang Y, Mufson EJ, Herrup K. Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer’s disease. J Neurosci. 2003;23:2557–63.PubMedGoogle Scholar
  111. 111.
    Alberici A, Bonato C, Borroni B, Cotelli M, Mattioli F, Binetti G, et al. Dementia, delusions and seizures: storage disease or genetic AD? Eur J Neurol. 2007;14:1057–9. doi: 10.1111/j.1468-1331.2007.01664.x.PubMedCrossRefGoogle Scholar
  112. 112.
    Minkeviciene R, Rheims S, Dobszay MB, Zilberter M, Hartikainen J, Fülöp L, et al. Amyloid beta-induced neuronal hyperexcitability triggers progressive epilepsy. J Neurosci. 2009;29:3453–62. doi: 10.1523/JNEUROSCI.5215-08.2009.PubMedCrossRefGoogle Scholar
  113. 113.
    Minkeviciene R, Ihalainen J, Malm T, Matilainen O, Keksa-Goldsteine V, Goldsteins G, et al. Age-related decrease in stimulated glutamate release and vesicular glutamate transporters in APP/PS1 transgenic and wild-type mice. J Neurochem. 2008;105:584–94. doi: 10.1111/j.1471-4159.2007.05147.x.PubMedCrossRefGoogle Scholar
  114. 114.
    Palop JJ, Mucke L. Synaptic depression and aberrant excitatory network activity in Alzheimer’s disease: two faces of the same coin? Neuromolecular Med. 2010;12:48–55. doi: 10.1007/s12017-009-8097-7.PubMedCentralPubMedCrossRefGoogle Scholar
  115. 115.
    LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci. 2007;8:499–509. doi: 10.1038/nrn2168.PubMedCrossRefGoogle Scholar
  116. 116.
    Shilling D, Müller M, Takano H, Mak DO, Abel T, Coulter DA, et al. Suppression of InsP3 receptor-mediated Ca2+ signaling alleviates mutant presenilin-linked familial Alzheimer’s disease pathogenesis. J Neurosci. 2014;34:6910–23. doi: 10.1523/JNEUROSCI.5441-13.2014.PubMedCentralPubMedCrossRefGoogle Scholar
  117. 117.
    Leonard AS, McNamara JO. Does epileptiform activity contribute to cognitive impairment in Alzheimer’s disease? Neuron. 2007;55:677–8. doi: 10.1016/j.neuron.2007.08.014.PubMedCrossRefGoogle Scholar
  118. 118.
    Scharfman HE. Alzheimer’s disease and epilepsy: insight from animal models. Future Neurol. 2012;7:177–92. doi: 10.2217/fnl.12.8.PubMedCentralPubMedCrossRefGoogle Scholar
  119. 119.
    Karlsson IK, Bennet AM, Ploner A, Andersson TM, Reynolds CA, Gatz M, et al. Apolipoprotein E ε4 genotype and the temporal relationship between depression and dementia. Neurobiol Aging. 2015. doi: 10.1016/j.neurobiolaging.2015.01.008.PubMedGoogle Scholar
  120. 120.
    Rohn TT. Is apolipoprotein E4 an important risk factor for vascular dementia? Int J Clin Exp Pathol. 2014;7:3504–11.PubMedCentralPubMedGoogle Scholar
  121. 121.
    Busch RM, Lineweaver TT, Naugle RI, Kim KH, Gong Y, Tilelli CQ, et al. ApoE-epsilon4 is associated with reduced memory in long-standing intractable temporal lobe epilepsy. Neurology. 2007;68:409–14. doi: 10.1212/01.wnl.0000253021.60887.db.PubMedCrossRefGoogle Scholar
  122. 122.
    Kado DM, Karlamangla AS, Huang MH, Troen A, Rowe JW, Selhub J, et al. Homocysteine versus the vitamins folate, B6, and B12 as predictors of cognitive function and decline in older high-functioning adults: MacArthur Studies of Successful Aging. Am J Med. 2005;118:161–7. doi: 10.1016/j.amjmed.2004.08.019.PubMedCrossRefGoogle Scholar
  123. 123.
    Gorgone G, Caccamo D, Pisani LR, Currò M, Parisi G, Oteri G, et al. Hyperhomocysteinemia in patients with epilepsy: does it play a role in the pathogenesis of brain atrophy? A preliminary report. Epilepsia. 2009;50 Suppl 1:33–6. doi: 10.1111/j.1528-1167.2008.01967.x.PubMedCrossRefGoogle Scholar
  124. 124.
    Licht EA, Fujikawa DG. Nonconvulsive status epilepticus with frontal features: quantitating severity of subclinical epileptiform discharges provides a marker for treatment efficacy, recurrence and outcome. Epilepsy Res. 2002;51:13–21. doi: 10.1016/s0920-1211(02)00107-9.PubMedCrossRefGoogle Scholar
  125. 125.
    Pacagnella D, Lopes TM, Morita ME, Yasuda CL, Cappabianco FA, Bergo F, et al. Memory impairment is not necessarily related to seizure frequency in mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia. 2014;55:1197–204. doi: 10.1111/epi.12691.PubMedCrossRefGoogle Scholar
  126. 126.
    Park IS, Yoo SW, Lee KS, Kim JS. Epileptic seizure presenting as dementia with Lewy bodies. Gen Hosp Psychiatry. 2014;36:3–5. doi: 10.1016/j.genhosppsych.2013.10.015.CrossRefGoogle Scholar
  127. 127.
    Mrak RE, Griffin WT. Dementia with Lewy bodies: definition, diagnosis, and pathogenic relationship to Alzheimer’s disease. Neuropsychiatr Dis Treat. 2007;3:619–25.PubMedCentralPubMedGoogle Scholar
  128. 128.
    Vyas U, Franco R. Rem behavior disorder (RBD) as an early marker for development of neurodegenerative diseases. BJMP. 2012;5:506.Google Scholar
  129. 129.
    Oono M, Uno H, Umesaki A, Nagatsuka K, Kinoshita M, Naritomi H. Severe and prolonged ictal paresis in an elderly patient. Epilepsy Behav Case Rep. 2014;2:105–7. doi: 10.1016/j.ebcr.2014.03.009.PubMedCentralPubMedCrossRefGoogle Scholar
  130. 130.
    Jones R. Co-existent medical problems and concomitant diseases. In: Gauthier S, editor. Clinical diagnosis and management of Alzheimer’s disease. Abingdon: Taylor & Francis Group, LLC; 2007. p. 257–65. doi: 10.3109/9780203931714-26.Google Scholar
  131. 131.
    Leppik IE. The place of levetiracetam in the treatment of epilepsy. Epilepsia. 2001;42:44–5. doi: 10.1111/j.1528-1167.2001.00010.x.PubMedCrossRefGoogle Scholar
  132. 132.
    Krämer G. Epileptic seizures and epilepsy in the elderly]. Ther Umsch. 2001;58:684–90.PubMedCrossRefGoogle Scholar
  133. 133.
    Brainin M, Matz K, Nemec M, Teuschl Y, Dachenhausen A, Asenbaum-Nan S, et al. Prevention of poststroke cognitive decline: ASPIS – a multicenter, randomized, observer-blind, parallel group clinical trial to evaluate multiple lifestyle interventions - study design and baseline characteristics. Int J Stroke. 2013. doi: 10.1111/ijs.12188.Google Scholar
  134. 134.
    Teuschl Y, Matz K, Brainin M. Prevention of post-stroke cognitive decline: a review focusing on lifestyle interventions. Eur J Neurol. 2013;20:35–49. doi: 10.1111/j.1468-1331.2012.03757.x.PubMedCrossRefGoogle Scholar
  135. 135.
    Danysz W, Parsons CG. Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors and memantine--searching for the connections. Br J Pharmacol. 2012;167:324–52. doi: 10.1111/j.1476-5381.2012.02057.x.PubMedCentralPubMedCrossRefGoogle Scholar
  136. 136.
    Thomas SJ, Grossberg GT. Memantine: a review of studies into its safety and efficacy in treating Alzheimer’s disease and other dementias. Clin Interv Aging. 2009;4:367–77. doi: 10.2147/cia.s6666.PubMedCentralPubMedGoogle Scholar
  137. 137.
    Parsons CG, Danysz W, Dekundy A, Pulte I. Memantine and cholinesterase inhibitors: complementary mechanisms in the treatment of Alzheimer’s disease. Neurotox Res. 2013;24:358–69. doi: 10.1007/s12640-013-9398-z.PubMedCentralPubMedCrossRefGoogle Scholar
  138. 138.
    Fisher RS, Bortz JJ, Blum DE, Duncan B, Burke H. A pilot study of donepezil for memory problems in epilepsy. Epilepsy Behav. 2001;2:330–4. doi: 10.1006/ebeh.2001.0221.PubMedCrossRefGoogle Scholar
  139. 139.
    Kim H, Kim G, Jang W, Kim SY, Chang N. Association between intake of B vitamins and cognitive function in elderly Koreans with cognitive impairment. Nutr J. 2014;13:118. doi: 10.1186/1475-2891-13-118.PubMedCentralPubMedCrossRefGoogle Scholar
  140. 140.
    Li MM, Yu JT, Wang HF, Jiang T, Wang J, Meng XF, et al. Efficacy of vitamins B supplementation on mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis. Curr Alzheimer Res. 2014;11:844–52.PubMedCrossRefGoogle Scholar
  141. 141.
    Agnew-Blais JC, Wassertheil-Smoller S, Kang JH, Hogan PE, Coker LH, Snetselaar LG, et al. Folate, vitamin B-6, and vitamin B-12 intake and mild cognitive impairment and probable dementia in the Women’s Health Initiative Memory study. J Acad Nutr Diet. 2015;115:231–41. doi: 10.1016/j.jand.2014.07.006.PubMedCrossRefGoogle Scholar
  142. 142.
    Annweiler C, Dursun E, Féron F, Gezen-Ak D, Kalueff AV, Littlejohns T, et al. ‘Vitamin D and cognition in older adults’: updated international recommendations. J Intern Med. 2015;277:45–57. doi: 10.1111/joim.12279.PubMedCrossRefGoogle Scholar
  143. 143.
    Song JH, Park MH, Han C, Jo SA, Ahn K. Serum homocysteine and folate levels are associated with late-life dementia in a Korean population. Osong Public Health Res Perspect. 2010;1:17–22. doi: 10.1016/j.phrp.2010.12.006.PubMedCentralPubMedCrossRefGoogle Scholar
  144. 144.
    Loria-Kohen V, Gómez-Candela C, Palma-Milla S, Amador-Sastre B, Hernanz A, Bermejo LM. A pilot study of folic acid supplementation for improving homocysteine levels, cognitive and depressive status in eating disorders. Nutr Hosp. 2013;28:807–15. doi: 10.3305/nh.2013.28.3.6335.PubMedGoogle Scholar
  145. 145.
    Ford AH, Flicker L, Alfonso H, Thomas J, Clarnette R, Martins R, et al. Vitamins B(12), B(6), and folic acid for cognition in older men. Neurology. 2010;75:1540–7. doi: 10.1212/wnl.0b013e3181f962c4.PubMedCrossRefGoogle Scholar
  146. 146.
    Blasko I, Hinterberger M, Kemmler G, Jungwirth S, Krampla W, Leitha T, Heinz Tragl K, Fischer P. Conversion from mild cognitive impairment to dementia: influence of folic acid and vitamin B12 use in the VITA cohort. J Nutr Health Aging. 2012;16:687–94. doi: 10.1007/s12603-012-0051-y.PubMedCrossRefGoogle Scholar
  147. 147.
    Singleton AB, Farrer MJ, Bonifati V. The genetics of Parkinson’s disease: progress and therapeutic implications. Mov Disord. 2013;28:14–23. doi: 10.1002/mds.25249.PubMedCentralPubMedCrossRefGoogle Scholar
  148. 148.
    Morrell MJ, Sarto GE, Shafer PO, Borda EA, Herzog A, Callanan M. Health issues for women with epilepsy: a descriptive survey to assess knowledge and awareness among healthcare providers. J Womens Health Gend Based Med. 2000;9:959–65. doi: 10.1089/15246090050199982.PubMedCrossRefGoogle Scholar
  149. 149.
    Hernández R, Fernández Mde L, Miranda G, Suástegui R. Decrease of folic acid and cognitive alterations in patients with epilepsy treated with phenytoin or carbamazepine, pilot study. Rev Invest Clin. 2005;57:522–31.PubMedGoogle Scholar
  150. 150.
    Sener U, Zorlu Y, Karaguzel O, Ozdamar O, Coker I, Topbas M. Effects of common anti-epileptic drug monotherapy on serum levels of homocysteine, vitamin B12, folic acid and vitamin B6. Seizure. 2006;2:79–85. doi: 10.1016/j.seizure.2005.11.002.CrossRefGoogle Scholar
  151. 151.
    Ogawa Y, Kaneko S, Otani K, Fukushima Y. Serum folic acid levels in epileptic mothers and their relationship to congenital malformations. Epilepsy Res. 1991;8:75–8. doi: 10.1016/0920-1211(91)90039-i.PubMedCrossRefGoogle Scholar
  152. 152.
    Yoshiike Y, Kimura T, Yamashita S, Furudate H, Mizoroki T, Murayama M, et al. GABAA receptor-mediated acceleration of aging-associated memory decline in APP/PS1 mice and its pharmacological treatment by picrotoxin. PLoS One. 2008;3:3029. doi: 10.1371/journal.pone.0003029.CrossRefGoogle Scholar
  153. 153.
    Kuruba R, Hattiangady B, Shetty AK. Hippocampal neurogenesis and neural stem cells in temporal lobe epilepsy. Epilepsy Behav. 2009;14 Suppl 1:65–73. doi: 10.1016/j.yebeh.2008.08.020.PubMedCentralPubMedCrossRefGoogle Scholar
  154. 154.
    Hattiangady B, Shetty AK. Subcutaneous administration of BDNF dramatically enhances dentate neurogenesis in the injured aged hippocampus. Soc Neurosci Abstr. 2007;562:12.Google Scholar
  155. 155.
    Jin K, Sun Y, Xie L, Batteur S, Mao XO, Smelick C, et al. Neurogenesis and aging: FGF-2 and HB-EGF restore neurogenesis in hippocampus and subventricular zone of aged mice. Aging Cell. 2003;2:175–83. doi: 10.1046/j.1474-9728.2003.00046.x.PubMedCrossRefGoogle Scholar
  156. 156.
    Shetty AK, Hattiangady B. Prospects of stem cell therapy for temporal lobe epilepsy. Stem Cells. 2007;25:2396–407. doi: 10.1634/stemcells.2007-0313.PubMedCentralPubMedCrossRefGoogle Scholar
  157. 157.
    Kohl Z, Winner B, Ubhi K, Rockenstein E, Mante M, Münch M, et al. Fluoxetine rescues impaired hippocampal neurogenesis in a transgenic A53T synuclein mouse model. Eur J Neurosci. 2012;35:10–9. doi: 10.1111/j.1460-9568.2011.07933.x.PubMedCentralPubMedCrossRefGoogle Scholar
  158. 158.
    Peters ME, Vaidya V, Drye LT, Rosenberg PB, Martin BK, Porsteinsson AP, et al. Sertraline for the treatment of depression in Alzheimer disease: genetic influences. J Geriatr Psychiatry Neurol. 2011;24(4):222–8. doi: 10.1177/0891988711422527.PubMedCentralPubMedCrossRefGoogle Scholar
  159. 159.
    Mula M, Schmitz B, Sander JW. The pharmacological treatment of depression in adults with epilepsy. Expert Opin Pharmacother. 2008;9:3159–68. doi: 10.1517/14656560802587024.PubMedCrossRefGoogle Scholar
  160. 160.
    Pisani F, Spina E, Oteri G. Antidepressant drugs and seizure susceptibility: from in vitro data to clinical practice. Epilepsia. 1999;40 Suppl 10:S48–56. doi: 10.1111/j.1528-1157.1999.tb00885.x.PubMedCrossRefGoogle Scholar
  161. 161.
    Harden CL, Goldstein MA. Mood disorders in patients with epilepsy: epidemiology and management. CNS Drugs. 2002;16:291–302. doi: 10.2165/00023210-200216050-00002.PubMedCrossRefGoogle Scholar
  162. 162.
    Sanchez PE, Zhu L, Verret L, Vossel KA, Orr AG, Cirrito JR, et al. Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proc Natl Acad Sci U S A. 2012;109:2895–903. doi: 10.1073/pnas.1121081109.CrossRefGoogle Scholar
  163. 163.
    Bakker A, Krauss GL, Albert MS, Speck CL, Jones LR, Stark CE, et al. Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron. 2012;74:467–74. doi: 10.1016/j.neuron.2012.03.023.PubMedCentralPubMedCrossRefGoogle Scholar
  164. 164.
    Ben-Menachem E, Gilland E. Efficacy and tolerability of levetiracetam during 1-year follow-up in patients with refractory epilepsy. Seizure. 2003;12:131–5. doi: 10.1016/s1059-1311(02)00251-0.PubMedCrossRefGoogle Scholar
  165. 165.
    Cereghino JJ, Biton V, Abou-Khalil B, Dreifuss F, Gauer LJ, Leppik I. Levetiracetam for partial seizures: results of a double-blind, randomized clinical trial. Neurology. 2000;55(2):236–42. doi: 10.1212/wnl.55.2.236.PubMedCrossRefGoogle Scholar
  166. 166.
    Brodie MJ, Perucca E, Ryvlin P, Ben-Menachem E, Meencke HJ. Levetiracetam Monotherapy Study Group. Comparison of levetiracetam and controlled-release carbamazepine in newly diagnosed epilepsy. Neurology. 2007;68:402–8. doi: 10.1212/01.wnl.0000252941.50833.4a.PubMedCrossRefGoogle Scholar
  167. 167.
    Shorvon SD, Löwenthal A, Janz D, Bielen E, Loiseau P. Multicenter double-blind, randomized, placebo-controlled trial of levetiracetam as add-on therapy in patients with refractory partial seizures. European Levetiracetam Study Group. Epilepsia. 2000;41:1179–86. doi: 10.1111/j.1528-1157.2000.tb00323.x.PubMedCrossRefGoogle Scholar
  168. 168.
    Patsalos PN. Antiepileptic drug interactions. London: Springer; 2013. doi: 10.1007/978-1-4471-2434-4.CrossRefGoogle Scholar
  169. 169.
    Perucca E, French J, Bialer M. Development of new antiepileptic drugs: challenges, incentives, and recent advances. Lancet Neurol. 2007;6:793–804. doi: 10.1016/s1474-4422(07)70215-6.PubMedCrossRefGoogle Scholar
  170. 170.
    French JA, Gazzola DM. New generation antiepileptic drugs: what do they offer in terms of improved tolerability and safety? Ther Adv Drug Saf. 2011;2:141–58. doi: 10.1177/2042098611411127.PubMedCentralPubMedCrossRefGoogle Scholar
  171. 171.
    Johannessen Landmark C, Patsalos PN. Drug interactions involving the new second- and third-generation antiepileptic drugs. Expert Rev Neurother. 2010;10:119–40. doi: 10.1586/ern.09.136.PubMedCrossRefGoogle Scholar
  172. 172.
    Dhikav V, Anand K. Potential predictors of hippocampal atrophy in Alzheimer’s disease. Drugs Aging. 2011;28:1–11. doi: 10.2165/11586390-000000000-00000.PubMedCrossRefGoogle Scholar
  173. 173.
    Dhikav V, Anand K. Hippocampal atrophy may be a predictor of seizures in Alzheimer’s disease. Med Hypotheses. 2007;69:234–5. doi: 10.1016/j.mehy.2006.11.031.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Neurology, Neurosurgery and GeneticsRussian National Research Medical University and Moscow Research and Clinical Center for NeuropsychiatryMoscowRussia

Personalised recommendations