Setting the Stage for Risk Management: Severe Weather Under a Changing Climate

  • Donald J. WuebblesEmail author
Part of the Risk, Governance and Society book series (RISKGOSO, volume 19)


The most recent evaluations of the state of changes occurring in the Earth’s climate through the 2013 Assessment Report 5 (AR5) of the Intergovernmental Panel on Climate Change and through the 2014 U.S. National Climate Assessment clearly indicates that climate change is happening now, it is changing rapidly, and that the primary cause is human activities. These assessments draw upon the latest scientific understanding of climate and climate change, synthesizing recent advances in the understanding of the science of climate change, and providing a succinct overview of the past and projected effects of climate change on the United States and the world. Findings include new analyses of the observed trends and projected future climate changes. Along with increasing temperatures over most of our planet, the pattern of precipitation change in general is one of increases at higher northern latitudes and drying in the tropics and subtropics over land. One of the major findings is that there has been an increase in some key types of extreme weather events, especially in heat waves and large precipitation events, in the U.S. (and throughout the world) over the last 50 years. There has been an increase in the number of historically top 1 % of heavy precipitation events across all regions of the U.S.—this is not surprising, as the atmosphere warms it holds more moisture. The analyses also indicate the trend towards large precipitation events is likely to continue to increase throughout this century. The drying of the subtropics and wetter conditions at more northern latitudes means that both droughts and floods are likely to be increasing issues in various parts of the world. Scientific analyses indicate a strong link between changing trends in severe weather events and the changing climate. In addition, there are many concerns about potential impacts of the changing climate, e.g., the effects of sea level rise on coastal areas. The aim here is to summarize the findings from the new assessments, plus provide a discussion of the current understanding of severe weather in relation to the science of climate change, with a special emphasis on the issues and remaining uncertainties affecting our future.


Tropical Cyclone Heat Wave Storm Surge Ocean Acidification Extreme Weather Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Boberg F, Berg P, Thejll P, Gutowski W, Christensen J (2009) Improved confidence in climate change projections of precipitation evaluated using daily statistics from the PRUDENCE ensemble. Clim Dyn 32:1097–1106. doi: 10.1007/s00382-008-0446-y CrossRefGoogle Scholar
  2. Caldeira K, Wickett ME (2003) Oceanography: anthropogenic carbon and ocean pH. Nature 425:365. doi: 10.1038/425365a CrossRefPubMedADSGoogle Scholar
  3. Christidis N, Stott PA, Brown SJ (2011) The role of human activity in the recent warming of extremely warm daytime temperatures. J Clim 24:1922–1930. doi: 10.1175/2011JCLI4150.1 CrossRefADSGoogle Scholar
  4. Church JA, White NJ (2011) Sea-level rise from the late 19th to the early 21st century. Surv Geophys 32:585–602. doi: 10.1007/s10712-011-9119-1 CrossRefADSGoogle Scholar
  5. Church JA, White NJ, Konikow LF, Domingues CM, Cogley JG, Rignot E, Gregory JM, van den Broeke MR, Monaghan AJ, Velicogna I (2011) Revisiting the earth’s sea-level and energy budgets from 1961 to 2008. Geophys Res Lett 38:L18601. doi: 10.1029/2011GL048794 CrossRefADSGoogle Scholar
  6. Deser C, Knutti R, Solomon S, Phillips AS (2012) Communication of the role of natural variability in future North American climate. Nat Clim Chang 2:775–779. doi: 10.1038/nclimate1562 CrossRefADSGoogle Scholar
  7. Diffenbaugh NS, Scherer M, Trapp RJ (2013) Robust increases in severe thunderstorm environments in response to greenhouse forcing. Proc Natl Acad Sci 110:16361–16366. doi: 10.1073/pnas.1307758110 PubMedCentralCrossRefPubMedADSGoogle Scholar
  8. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192. doi: 10.1146/annurev.marine.010908.163834 CrossRefADSGoogle Scholar
  9. Duffy PB, Tebaldi C (2012) Increasing prevalence of extreme summer temperatures in the U.S. Clim Chang 111:487–495. doi: 10.1007/s10584-012-0396-6 CrossRefGoogle Scholar
  10. Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B (2008) Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320:1490–1492. doi: 10.1126/science.1155676 CrossRefPubMedADSGoogle Scholar
  11. Feely RA, Alin SR, Newton J, Sabine CL, Warner M, Devol A, Krembs C, Maloy C (2010) The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuar Coast Shelf Sci 88:442–449. doi: 10.1016/j.ecss.2010.05.004 CrossRefADSGoogle Scholar
  12. Gillett NP, Arora VK, Flato GM, Scinocca JF, Salzen KV (2012) Improved constraints on 21st-century warming derived using 160 years of temperature observations. Geophys Res Lett 39:L01704. doi: 10.1029/2011GL050226 CrossRefADSGoogle Scholar
  13. Gutowski WJ, Takle ES, Kozak KA, Patton JC, Arritt RW, Christensen JH (2007) A possible constraint on regional precipitation intensity changes under global warming. J Hydrometeorol 8:1382–1396. doi: 10.1175/2007jhm817.1 CrossRefADSGoogle Scholar
  14. Hansen J, Sato M et al (2007) Dangerous human-made interference with climate: a GISS modelE study. Atmos Chem Phys 7:2287–2312. doi: 10.5194/acp-7-2287-2007 CrossRefADSGoogle Scholar
  15. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteor Soc 90:1095–1107. doi: 10.1175/2009BAMS2607.1 CrossRefGoogle Scholar
  16. Hawkins E, Sutton R (2011) The potential to narrow uncertainty in projections of regional precipitation change. Clim Dyn 37:407–418CrossRefGoogle Scholar
  17. Hoerling M, Chen M, Dole R, Eischeid J, Kumar A, Nielsen-Gammon JW, Pegion P, Perlwitz J, Quan X-W, Zhang T (2013) Anatomy of an extreme event. J Clim 26:2811–2832. doi: 10.1175/JCLI-D-12-00270.1 CrossRefADSGoogle Scholar
  18. Hönisch B, Ridgwell A et al (2012) The geological record of ocean acidification. Science 335:1058–1063. doi: 10.1126/science.1208277 CrossRefPubMedADSGoogle Scholar
  19. Huber M, Knutti R (2011) Anthropogenic and natural warming inferred from changes in earth’s energy balance. Nat Geosci 5:31–36. doi: 10.1038/ngeo1327 CrossRefADSGoogle Scholar
  20. Intergovernmental Panel on Climate Change (IPCC) (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattenr G-K, Allen SK, Tignor M, Midgley PM (eds) A special report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  21. Intergovernmental Panel on Climate Change (IPCC) (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the 5th assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  22. Intergovernmental Panel on Climate Change (IPCC) (2014) Climate change 2014: synthesis report. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 151 ppGoogle Scholar
  23. Janssen E, Wuebbles DJ, Kunkel KE, Olsen SC, Goodman A (2014) Trends and projections of extreme precipitation over the contiguous United States. Earth’s Future 2:99–113. doi: 10.1002/2013EF000185 CrossRefADSGoogle Scholar
  24. Kunkel KE et al (2013) Monitoring and understanding changes in extreme storm statistics: state of knowledge. Bull Am Meteorol Soc 94:499–514. doi: 10.1175/BAMS-D-11-00262.1 CrossRefGoogle Scholar
  25. Le Quéré C et al (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2:831–836. doi: 10.1038/ngeo689 CrossRefADSGoogle Scholar
  26. Mann ME, Zhang Z, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni F (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci 105:13252–13257. doi: 10.1073/pnas.0805721105 PubMedCentralCrossRefPubMedADSGoogle Scholar
  27. Marzeion B, Jarosch AH, Hofer M (2012) Past and future sea level change from the surface mass balance of glaciers. Cryosphere Discuss 6:3177–3241. doi: 10.5194/tcd-6-3177-2012 CrossRefADSGoogle Scholar
  28. Mathis JT, Cross JN, Bates NR (2011) Coupling primary production and terrestrial runoff to ocean acidification and carbonate mineral suppression in the eastern Bering Sea. J Geophys Res 116:C02030. doi: 10.1029/2010JC006453 ADSGoogle Scholar
  29. Matthews HD, Zickfeld K (2012) Climate response to zeroed emissions of greenhouse gases and aerosols. Nat Clim Chang 2:338–341. doi: 10.1038/nclimate1424 CrossRefADSGoogle Scholar
  30. McGranahan G, Balk D, Anderson B (2007) The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ Urban 19:17–37CrossRefGoogle Scholar
  31. Meehl GA, Tebaldi C, Walton G, Easterling D, McDaniel L (2009) Relative increase of record high maximum temperatures compared to record low minimum temperatures in the U.S. Geophys Res Lett 36:L23701. doi: 10.1029/2009GL040736 CrossRefADSGoogle Scholar
  32. Melillo JM, Richmond TC, Yohe GW (eds) (2014) Climate change impacts in the United States: the third national climate assessment. U.S. Global Change Research Program, 840 pp. Available at
  33. Min S, Zhang X, Zwiers F, Hegerl G (2011) Human contribution to more-intense precipitation extremes. Nature 470:378–381CrossRefPubMedADSGoogle Scholar
  34. Nerem RS, Chambers DP, Choe C, Mitchum GT (2010) Estimating mean sea level change from the TOPEX and Jason altimeter missions. Mar Geod 33:435–446. doi: 10.1080/01490419.2010.491031 CrossRefGoogle Scholar
  35. Orr JC (2011) Recent and future changes in ocean carbonate chemistry. In: Gattuso J-P, Hansson L (eds) Ocean acidification. Oxford University Press, Oxford, pp 41–66Google Scholar
  36. Orr JC et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686. doi: 10.1038/nature04095 CrossRefPubMedADSGoogle Scholar
  37. PAGES 2K Consortium (2013) Continental-scale temperature variability during the past two millennia. Nat Geosci 6:339–346. doi: 10.1038/ngeo1797 CrossRefADSGoogle Scholar
  38. Parris A, Bromirski P, Burkett V, Cayan D, Culver M, Hall J, Horton R, Knuuti K, Moss R, Obeysekera J, Sallenger A, Weiss J (2012) Global sea level rise scenarios for the United States national climate assessment. NOAA Tech Memo OAR CPO-1, National Oceanic and Atmospheric Administration 37 pp. Available online at
  39. Peterson TC et al (2013) Monitoring and understanding changes in heat waves, cold waves, floods and droughts in the United States: State of knowledge. Bull Am Meteorol Soc 94:821–834. doi: 10.1175/BAMS-D-12-00066.1 CrossRefGoogle Scholar
  40. Rahmstorf S, Perrette M, Vermeer M (2012) Testing the robustness of semi-empirical sea level projections. Clim Dyn 39:861–875. doi: 10.1007/s00382-011-1226-7 CrossRefGoogle Scholar
  41. Rupp DE, Mote PW, Massey N, Rye CJ, Jones R, Allen MR (2012) Did human influence on climate make the 2011 Texas drought more probable? Bull Am Meteorol Soc 93:1052–1054 (Peterson TC, Stott PA, Herring S (eds) Explaining extreme events of 2011 from a climate perspective)Google Scholar
  42. Santer BD et al (2013) Identifying human influences on atmospheric temperature. Proc Natl Acad Sci 110:26–33. doi: 10.1073/pnas.1210514109 PubMedCentralCrossRefPubMedADSGoogle Scholar
  43. Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J Geophys Res: Atmos 118:2473–2493. doi: 10.1002/jgrd.50188 ADSGoogle Scholar
  44. Smith AB, Katz RW (2013) U.S. billion-dollar weather and climate disasters: data sources, trends, accuracy and biases. Nat Hazard 67:387–410CrossRefGoogle Scholar
  45. Stott PA, Gillett NP, Hegerl GC, Karoly DJ, Stone DA, Zhang X, Zwiers F (2010) Detection and attribution of climate change: a regional perspective. Wiley Interdiscip Rev Clim Chang 1:192–211. doi: 10.1002/wcc.34 Google Scholar
  46. Trenberth KE (2011) Attribution of climate variations and trends to human influences and natural variability. WIREs Clim Change 2:925–930. doi: 10.1002/wcc.142 CrossRefGoogle Scholar
  47. Trenberth KE, Fasullo JT (2012) Climate extremes and climate change: the Russian heat wave and other climate extremes of 2010. J Geophys Res: Atmos 117:D17103. doi: 10.1029/2012JD018020 ADSGoogle Scholar
  48. UK Royal Society (UKRS) and U.S. National Academy of Sciences (NAS) (2014) Climate change: evidence and causes. National Academy Press, Washington, DCGoogle Scholar
  49. Vose RS, Applequist S, Menne MJ, Williams CN Jr, Thorne P (2012) An intercomparison of temperature trends in the US historical climatology network and recent atmospheric reanalyses. Geophys Res Lett 39:L10703. doi: 10.1029/2012GL051387 CrossRefADSGoogle Scholar
  50. Vose RS et al (2014) Monitoring and understanding changes in extremes: extratropical storms, winds, and waves. Bull Am Meteorol Soc. doi: 10.1175/BAMS-D-12-00162.1 Google Scholar
  51. Wuebbles DJ et al (2014a) CMIP5 climate model analyses: climate extremes in the United States. Bull Am Meteorol Soc. doi: 10.1175/BAMS-D-12-00172.1 Google Scholar
  52. Wuebbles DJ, Kunkel K, Wehner M, Zobel Z (2014b) Severe weather in the United States under a changing climate. Eos 95:149–150. doi: 10.1002/2014EO180001 CrossRefADSGoogle Scholar
  53. Yamamoto-Kawai M, McLaughlin FA, Carmack EC, Nishino S, Shimada K (2009) Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt. Science 326:1098–1100. doi: 10.1126/science.1174190 CrossRefPubMedADSGoogle Scholar
  54. Yin J (2012) Century to multi-century sea level rise projections from CMIP5 models. Geophys Res Lett 39:7. doi: 10.1029/2012GL052947 Google Scholar
  55. Zwiers F, Alexander L, Hegerl G, Knutson T, Kossin J, Naveau P, Nicholls N, Schaar C, Seneviratne S, Zhang X (2013) Climate extremes: challenges in estimating and understanding recent changes in the frequency and intensity of extreme climate and weather events. In: Asrar G, Hurrell J (eds) Climate science for serving society. Springer, DordrechtGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Earth, Society, and Environment, Department of Atmospheric SciencesUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations