Skip to main content

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

  • 1308 Accesses

Abstract

Recall from Chap. 1 that it took a visit to Papua New Guinea in the mid-1950s. At that time a rare but fatal disease, kuru, had broken out among the primitive Fore people. In response to what was clearly an unusual happening, the epidemiologist Carleton Gajdusek (1923–2008) traveled to the region at the invitation of the local medical officer, Vincent Zigas. Once he was in the region Gajdusek discovered that the disease was being transmitted by means of funerary cannibalistic feasts involving ingestion of brain tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Alper, T., Cramp, W. A., Haig, D. A., & Clarke, M. C. (1967). Does the agent of scrapie replicate without nucleic acid? Nature, 214, 764–766.

    Article  CAS  PubMed  Google Scholar 

  • Alper, T., Haig, D. A., & Clarke, M. C. (1966). The exceptionally small size of the scrapie agent. Biochemical and Biophysical Research Communications, 22, 278–284.

    Article  CAS  PubMed  Google Scholar 

  • Baron, G. S., Wehrly, K., Dorward, D. W., Chesebro, B., & Caughey, B. (2002). Conversion of raft-associated prion protein to the protease-resistant state requires insertion of PrP-res (PrPSc) into contiguous membranes. The EMBO Journal, 21, 1031–1040.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Basler, K., Oesch, B., Scott, M., Westaway, D., Wälchli, M., Groth, D. F., et al. (1986). Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell, 46, 417–428.

    Article  CAS  PubMed  Google Scholar 

  • Brandner, S., Isenmann, S., Raeber, A., Fischer, M., Sailer, A., Kobayashi, Y., et al. (1996). Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature, 379, 339–343.

    Article  CAS  PubMed  Google Scholar 

  • Castilla, J., Saá, P., Hetz, C., & Soto, C. (2005). In vitro generation of infectious scrapie prions. Cell, 121, 195–206.

    Article  CAS  PubMed  Google Scholar 

  • Chesebro, B., Race, R., Wehrly, K., Nishio, J., Bloom, M., Lechner, D., et al. (1985). Identification of scrapie prion protein-specific mRNA in scrapie-infected and uninfected brain. Nature, 315, 331–333.

    Article  CAS  PubMed  Google Scholar 

  • Chesebro, B., Trifilo, M., Race, R., Meade-White, K., Teng, C., LaCasse, R., et al. (2005). Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science, 308, 1435–1439.

    Article  CAS  PubMed  Google Scholar 

  • Deleault, N. R., Harris, B. T., Reese, J. R., & Supattapone, S. (2007). Formation of native prions from minimal components in vitro. Proceedings of the National Academy of Sciences of the United States of America, 104, 9741–9746.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deleault, N. R., Piro, J. R., Walsh, D. J., Wang, F., Ma, J., Geoghegan, J. C., & Supattapone, S. (2012). Isolation of phosphatidylethanolamine as a solitary cofactor for prion formation in the absence of nucleic acids. Proceedings of the National Academy of Sciences of the United States of America, 109, 8546–8551.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gajdusek, D. C., Gibbs, C. J., Jr., & Alpers, M. (1966). Experimental transmission of a kuru-like syndrome to chimpanzees. Nature, 209, 794–796.

    Article  CAS  PubMed  Google Scholar 

  • Gajdusek, D. C., & Zigas, V. (1957). Degenerative disease of the central nervous system in New Guinea: Epidemic occurrence of “kuru” in the native population. New England Journal of Medicine, 257, 974–978.

    Article  CAS  PubMed  Google Scholar 

  • Gibbs, C. J., Jr., Gajdusek, D. C., Asher, D. M., Alpers, M. P., Beck, E., Daniel, P. M., et al. (1968). Creutzfeldt-Jakob disease (spongiform encephalopathy): Transmission to the chimpanzee. Science, 161, 388–389.

    Article  PubMed  Google Scholar 

  • Griffith, J. S. (1967). Self-replication and scrapie. Nature, 215, 1043–1044.

    Article  CAS  PubMed  Google Scholar 

  • Hadlow, W. J. (1959). Scrapie and kuru. Lancet, 2, 289–290.

    Article  Google Scholar 

  • Kocisko, D. A., Come, J. H., Priola, S. A., Chesebro, B., Raymond, G. J., Lansbury, P. T., et al. (1994). Cell-free formation of protease-resistant prion protein. Nature, 370, 471–474.

    Article  CAS  PubMed  Google Scholar 

  • Mallucci, G., Dickinson, A., Linehan, J., Klöhn, P. C., Brandner, S., & Collinge, J. (2003). Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science, 302, 871–874.

    Article  CAS  PubMed  Google Scholar 

  • Makarava, N., Kovacs, G. G., Bocharova, O., Savtchenko, R., Alexeeva, I., Budka, H., et al. (2010). Recombinant prion protein induces a new transmissible prion disease in wild-type animals. Acta Neuropathologica, 119, 177–187.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oesch, B., Westaway, D., Wälchli, M., McKinley, M. P., Kent, B. H., Aebersold, R., et al. (1985). A cellular gene encoding scrapie PrP 27–30 proteins. Cell, 40, 735–746.

    Article  CAS  PubMed  Google Scholar 

  • Pan, K. M., Baldwin, M., Nguyen, J., Gasset, M., Serban, A., Groth, D., et al. (1993). Conversion of α-helices into β-sheets features in the formation of the scrapie prion proteins. Proceedings of the National Academy of Sciences of the United States of America, 90, 10962–10966.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prusiner, S. B. (1982). Novel proteinaceous infectious particles cause scrapie. Science, 216, 136–144.

    Article  CAS  PubMed  Google Scholar 

  • Prusiner, S. B., McKinley, M. P., Bowman, K. A., Bolton, D. C., Bendheim, P. E., Groth, D. F., et al. (1983). Scrapie prions aggregate to form amyloid-like birefringent rods. Cell, 35, 349–358.

    Article  CAS  PubMed  Google Scholar 

  • Riek, R., Hornemann, S., Wider, G., Billeter, M., Glockshuber, R., & Wüthrich, K. (1996). NMR structure of the mouse prion protein domain PrP(121–231). Nature, 382, 180–182.

    Article  CAS  PubMed  Google Scholar 

  • Sandberg, M. K., Al-Doujaily, H., Sharps, B., Clarke, A. R., & Collinge, J. (2011). Prion propagation and toxicity in vivo occur in two distinct mechanistic phases. Nature, 470, 540–542.

    Article  CAS  PubMed  Google Scholar 

  • Silveira, J. R., Raymond, G. J., Hughson, A. G., Race, R. E., Sim, V. L., Hayes, S. F., et al. (2005). The most infectious prion protein particles. Nature, 437, 257–261.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wong, C., Xiong, L. W., Horiuchi, M., Raymond, L., Wehrly, K., Chesebro, B., et al. (2001). Sulfated glycans and elevated temperature stimulate PrPSc-dependent cell-free formation of protease-resistant prion protein. The EMBO Journal, 20, 377–386.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Prion Passage from Gut to Brain

  • Mabbott, N. A., & MacPherson, G. G. (2006). Prions and their lethal journey to the brain. Nature Reviews. Microbiology, 4, 201–211.

    Article  CAS  PubMed  Google Scholar 

Prion Diseases in Animals and Humans

  • Bruce, M. E., Will, R. G., Ironside, J. W., McConnell, I., Drummond, D., Suttie, A., et al. (1997). Transmissions to mice indicate that ‘new variant’ CJD is caused by the BSE agent. Nature, 389, 498–501.

    Article  CAS  PubMed  Google Scholar 

  • Castilla, J., Gonzalez-Romero, D., Saá, P., Morales, R., de Castro, J., & Soto, C. (2008). Crossing the species barrier by PrPSc replication in vitro generates unique infectious prions. Cell, 134, 757–765.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chesebro, B. (2003). Introduction to the transmissible spongiform encephalopathies or prion diseases. British Medical Bulletin, 66, 1–20.

    Article  CAS  PubMed  Google Scholar 

  • Collins, S., McLean, C. A., & Masters, C. L. (2001). Gerstmann-Sträussler-Scheinker syndrome, fatal familial insomnia, and kuru: A review of three less common human transmissible spongiform encephalopathies. Journal of Clinical Neuroscience, 8, 387–397.

    Article  CAS  PubMed  Google Scholar 

  • Hill, A. F., Desbruslais, M., Joiner, S., Sidle, K. C. L., Gowland, I., Collinge, J., et al. (1997). The same prion strain causes vCJD and BSE. Nature, 389, 448–450.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, C. J., Phillips, K. E., Schramm, P. T., McKenzie, D., Aiken, J. M., & Pedersen, J. A. (2006). Prions adhere to soil minerals and remain infectious. PLoS Pathogens, 2, e32.

    Article  PubMed Central  PubMed  Google Scholar 

  • Miller, M. W., Williams, E. S., Hobbs, N. T., & Wolfe, L. L. (2004). Environmental sources of prion transmission in mule deer. Emerging Infectious Diseases, 10, 1003–1006.

    Article  PubMed Central  PubMed  Google Scholar 

  • Raymond, G. J., Bossers, A., Raymond, L. D., O’Rourke, K. I., McHolland, L. E., Bryant, P. K. III, et al. (2000). Evidence of a molecular barrier limiting susceptibility of humans, cattle and sheep to chronic wasting disease. The EMBO Journal, 19, 4425–4430.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamgüney, G., Miller, M. W., Wolfe, L. L., Sirochman, T. M., Glidden, D. V., Palmer, C., et al. (2009). Asymptomatic deer excrete infectious prions in feces. Nature, 461, 529–532.

    Article  PubMed Central  PubMed  Google Scholar 

  • Vanik, D. L., Surewicz, K. A., & Surewicz, W. K. (2004). Molecular basis of barriers for interspecies transmissibility of mammalian prions. Molecular Cell, 14, 139–145.

    Article  CAS  PubMed  Google Scholar 

  • Wadsworth, J. D. F., Hill, A., Beck, J. A., & Collinge, J. (2003). Molecular and clinical classification of human prion diseases. British Medical Bulletin, 66, 241–254.

    Article  CAS  PubMed  Google Scholar 

Prion Strains

  • Beassen, R. A., Kocisko, D. A., Raymond, G. J., Nandan, S., Lansbury, P. T., & Caughey, B. (1995). Non-genetic propagation of strain-specific properties of scrapie prion. Nature, 375, 698–700.

    Article  Google Scholar 

  • Bessen, R. A., & Marsh, R. F. (1994). Distinct PrP properties suggest the molecular basis of strain variation in transmissible mink encephalopathy. Journal of General Virology, 68, 7859–7868.

    CAS  Google Scholar 

  • Collinge, J., & Clarke, A. R. (2007). A general model of prion strains and their pathogenicity. Science, 318, 930–936.

    Article  CAS  PubMed  Google Scholar 

  • Jones, E. M., & Surewicz, W. K. (2005). Fibril conformation as the basis of species- and strain-dependent seeding specificity of mammalian prion amyloids. Cell, 121, 163–172.

    Article  Google Scholar 

  • Legname, G., Baskakov, I. V., Nguyen, H. O. B., Riesner, D., Cohen, F. E., DeArmond, S. J., et al. (2004). Synthetic mammalian prions. Science, 305, 673–676.

    Article  CAS  PubMed  Google Scholar 

  • Saborio, G. P., Permanne, B., & Soto, C. (2001). Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature, 411, 810–813.

    Article  CAS  PubMed  Google Scholar 

  • Safar, J., Wille, H., Itri, V., Groth, D., Serban, H., Torchia, M., et al. (1998). Eight prion strains have PrP molecules with different conformations. Nature Medicine, 4, 1157–1165.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, M., Chien, P., Naber, N., Cooke, R., & Weissman, J. S. (2004). Conformational variations in an infectious protein determine prion strain differences. Nature, 428, 323–328.

    Article  CAS  PubMed  Google Scholar 

  • Telling, G. C., Parchi, P., DeArmond, S. J., Cortelli, P., Montagna, P., Gabizon, R., et al. (1996). Evidence for the conformation of the pathogenic isoform of the prion protein enciphering and propagating prion diversity. Science, 274, 2079–2082.

    Article  CAS  PubMed  Google Scholar 

  • Toyama, B. H., Kelly, M. J. S., Gross, J. D., & Weissman, J. S. (2007). The structural basis of yeast prion strain variants. Nature, 449, 233–237.

    Article  CAS  PubMed  Google Scholar 

Prion Biogenesis, Structure and Function

  • Bremer, J., Baumann, F., Tiberi, C., Wessig, C., Fischer, H., Schwarz, P., et al. (2010). Axonal prion protein is required for peripheral myelin maintenance. Nature Neuroscience, 13, 310–318.

    Article  CAS  PubMed  Google Scholar 

  • Collinge, J. (1994). Prion protein is necessary for normal synaptic function. Nature, 370, 295–297.

    Article  CAS  PubMed  Google Scholar 

  • Khosravani, H., Zhang, Y., Tsutsui, S., Hameed, S., Altier, C., Hamid, J., et al. (2008). Prion protein attenuates excitotoxicity by inhibiting NMDA receptors. Journal of Cell Biology, 181, 551–565.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Le Pichon, C. E., Valley, M. T., Polymenidou, M., Chesler, A. T., Sagdullaev, B. T., Aguzzi, A., et al. (2009). Olfactory behavior and physiology are disrupted in prion protein knockout mice. Nature Neuroscience, 12, 60–69.

    Article  PubMed Central  PubMed  Google Scholar 

  • Málaga-Trillo, E., Solis, G. P., Schrock, Y., Geiss, C., Luncz, L., Thomanetz, V., et al. (2009). Regulation of embryonic cell adhesion by the prion protein. PLoS Biology, 7, e1000055.

    Article  PubMed Central  Google Scholar 

  • Mouillet-Richard, S., Ermonval, M., Chebassier, C., Laplanche, J. L., Lehrmann, S., Launay, J. M., et al. (2000). Signal transduction through prion protein. Science, 289, 1925–1928.

    Article  CAS  PubMed  Google Scholar 

  • Santuccione, A., Sytnyk, V., Leshchynsʹka, I., & Schachner, M. (2005). Prion protein recruits its neuronal receptor NCAM to lipid rafts to activate p59fyn and to enhance neurite outgrowth. Journal of Cell Biology, 169, 341–354.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stahl, N., Baldwin, M. A., Teplow, D. B., Hood, L., Gibson, B. W., Burlingame, A. L., et al. (1993). Structural studies of the scrapie prion protein using mass spectroscopy and amino acid sequencing. Biochemistry, 32, 1991–2002.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, D. R., & Hooper, N. M. (2006). The prion protein and lipid rafts. Molecular Membrane Biology, 23, 89–99.

    Article  CAS  PubMed  Google Scholar 

Prion Toxicity

  • Hetz, C., Russelakis-Carneiro, M., Maundrell, K., Castilla, J., & Soto, C. (2003). Caspase-12 and endoplasmic reticulum stress mediate neurotoxicity of pathological prion protein. The EMBO Journal, 22, 5435–5445.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kristiansen, M., Deriziotis, P., Dimcheff, D. E., Jachson, G. S., Ovaa, H., Naumann, H., et al. (2007). Disease-associated prion protein oligomers inhibit the 26S proteasome. Molecular Cell, 26, 175–188.

    Article  CAS  PubMed  Google Scholar 

  • Laurén, J., Gimbel, D. A., Nygaard, H. B., Gilbert, J. W., & Strittmatter, S. M. (2009). Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature, 457, 1128–1132.

    Article  PubMed Central  PubMed  Google Scholar 

  • Moreno, J. A., Radford, H., Peretti, D., Steinert, J. R., Verity, N., Martin, M. G., et al. (2012). Sustained translational repression by eIF2α-P mediates prion neurodegeneration. Nature, 485, 507–511.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rane, N. S., Kang, S. W., Chakrabarti, O., Feigenbaum, L., & Hedge, R. S. (2008). Reduced translocation of nascent prion protein during ER stress contributes to neurodegeneration. Developmental Cell, 15, 359–370.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Resenberger, U. K., Harmeier, A., Woerner, A. C., Goodman, J. L., Müller, V., Krichnan, R., et al. (2011). The cellular prion protein mediates neurotoxic signaling of β-sheet-rich conformers independent of prion replication. The EMBO Journal, 30, 2057–2070.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sonati, T., Reimann, R. R., Falsig, J., Baral, P. K., O’Connor, T., Hornemann, S., et al. (2013). The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature, 501, 102–106.

    Article  CAS  PubMed  Google Scholar 

  • Um, J. W., Nygaard, H. B., Heiss, J. K., Kostylev, M. A., Stagi, M., Vortmeyer, A., et al. (2012). Alzheimer amyloid-β oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nature Neuroscience, 15, 1227–1235.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Structure of the Prion Amyloid Fibrils

  • Cobb, N. J., Sönnichsen, F. D., Mchaourab, H., & Surewicz, W. K. (2007). Molecular architecture of human prion protein amyloid: A parallel, in-register β-structure. Proceedings of the National Academy of Sciences of the United States of America, 104, 18946.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • DeMarco, M. L., & Daggett, V. (2004). From conversion to aggregation: Protofibril formation of the prion protein. Proceedings of the National Academy of Sciences of the United States of America, 101, 2293–2298.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Govaerts, C., Wille, H., Prusiner, S. B., & Cohen, F. E. (2004). Evidence for assembly of prions with left-handed β-helices into trimers. Proceedings of the National Academy of Sciences of the United States of America, 101, 8342–8347.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krishnan, R., & Lindquist, S. L. (2005). Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature, 435, 765–772.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shewmaker, F., Wichner, R. B., & Tycko, R. (2006). Amyloid of the prion domain of Sup35p has an in-register parallel β-sheet structure. Proceedings of the National Academy of Sciences of the United States of America, 103, 19754–19759.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wickner, R. B., Dyda, F., & Tycko, R. (2008). Amyloid of Rnq1p, the basis of the [PIN+] prion, has a parallel in-register β-sheet structure. Proceedings of the National Academy of Sciences of the United States of America, 105, 2403–2408.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Fungal Prions

  • Chernoff, Y. O., Lindquist, S. L., Ono, B., Inge-Vechtomov, S. G., & Liebman, S. W. (1995). Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science, 268, 880–884.

    Article  CAS  PubMed  Google Scholar 

  • Halfmann, R., Jarosz, D. F., Jones, S. K., Chang, A., Lancaster, A. K., & Lindquist, S. (2012). Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature, 482, 363–368.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liebman, S. W., & Chernoff, Y. O. (2012). Prions in yeast. Genetics, 191, 1041–1072.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mukhopadhyay, S., Krishnan, R., Lemke, E. A., Lindquist, S., & Deniz, A. A. (2007). A natively unfolded yeast prion monomer adopts an ensemble of collapsed and rapidly fluctuating structures. Proceedings of the National Academy of Sciences of the United States of America, 104, 2649–2654.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Serio, T. R. (2000). Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science, 289, 1317–1321.

    Article  CAS  PubMed  Google Scholar 

  • Shorter, J., & Lindquist, S. (2004). Hsp 104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science, 304, 1793–1797.

    Article  CAS  PubMed  Google Scholar 

  • True, H. L., Berlin, I., & Lindquist, S. L. (2004). Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature, 431, 184–187.

    Article  CAS  PubMed  Google Scholar 

  • Tuite, M. F., & Serio, T. R. (2010). The prion hypothesis: From biological anomaly to basic regulatory mechanism. Nature Reviews. Molecular Cell Biology, 11, 823–833.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tyedmers, J., Madariaga, M. L., & Lindquist, S. (2008). Prion switching in response to environmental stress. PLoS Biology, 6, e294.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wickner, R. B. (1994). [URE3] is an altered URE2 protein: Evidence for a prion analog in Saccharomyces cerevisiae. Science, 264, 566–569.

    Article  CAS  PubMed  Google Scholar 

Beneficial Prions in Higher Organisms

  • Hou, F., Sun, L., Zheng, H., Skaug, B., Jiang, Q. X., & Chen, Z. J. (2011). MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell, 146, 448–461.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Si, K., Choi, Y. B., White-Grindley, E., Majumdar, A., & Kandel, E. R. (2010). Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell, 140, 421–435.

    Article  CAS  PubMed  Google Scholar 

  • Si, K., Giustetto, M., Etkin, A., Hsu, R., Janisiewicz, A. M., Miniaci, M. C., et al. (2003). A neuronal isoform of CPEB regulates local protein synthesis and stabilizes synapse-specific long-term facilitation in Aplysia. Cell, 115, 893–904.

    Article  CAS  PubMed  Google Scholar 

Cell-to-Cell Spread

  • Braak, H., & Braak, E. (1991). Neuropathological staging of Alzheimer-related changes. Acta Neuropathologica, 82, 239–259.

    Article  CAS  PubMed  Google Scholar 

  • Braak, H., del Tredici, K., Rüb, U., de Vos, R. A., Jansen Steur, E. N., & Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging, 24, 197–211.

    Article  PubMed  Google Scholar 

  • Fevrier, B., Vilette, D., Archer, F., Loew, D., Faigle, W., Vidal, M., et al. (2004). Cells release prions in association with exosomes. Proceedings of the National Academy of Sciences of the United States of America, 101, 9683–9688.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gousset, K., Schiff, E., Langevin, C., Marijanovic, Z., Caputo, A., Browman, D. T., et al. (2009). Prions hijack tunneling nanotubes for intercellular spread. Nature Cell Biology, 11, 328–336.

    Article  CAS  PubMed  Google Scholar 

  • Lundmark, K., Westermark, G. T., Nyström, S., Murphy, C. L., Solomon, A., & Westermark, P. (2002). Transmissibility of systemic amyloidosis by a prion-like mechanism. Proceedings of the National Academy of Sciences of the United States of America, 99, 6979–6984.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rustom, A., Saffrich, R., Markovic, I., Walther, P., & Gerdes, H. H. (2004). Nanotubular highways for intercellular organelle transport. Science, 303, 1007–1010.

    Article  CAS  PubMed  Google Scholar 

  • Simons, M., & Raposo, G. (2009). Exosomes—Vesicular carriers for intercellular communication. Current Opinion in Cell Biology, 21, 575–581.

    Article  CAS  PubMed  Google Scholar 

  • Théry, C., Ostrowski, M., & Segura, E. (2009). Membrane vesicles as conveyors of immune responses. Nature Reviews. Immunology, 9, 581–593.

    Article  PubMed  Google Scholar 

Lipid Membranes

  • Karnovsky, M. J., Kleinfeld, A. M., Hoover, R. L., & Klausner, R. D. (1982). The concept of lipid domains in membranes. The Journal of Cell Biology, 94, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Simons, K., & Ikonen, E. (1997). Functional rafts in cell membranes. Nature, 387, 569–572.

    Article  CAS  PubMed  Google Scholar 

  • Simons, K., & van Meer, G. (1988). Lipid sorting in epithelial cells. Biochemistry, 27, 6197–6202.

    Article  CAS  PubMed  Google Scholar 

  • Singer, S. J., & Nicolson, G. L. (1972). The fluid mosaic model of the structure of cell membranes. Science, 175, 720–731.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix. Lipid Membrane Composition and Biophysical Properties

Appendix. Lipid Membrane Composition and Biophysical Properties

The mobility properties of the constituents of biological membranes depend both on the amount of cholesterol and the type of lipids present. Membrane lipids consist of a head group, a backbone, and a tail region (Fig. 7.10). Phosphoglycerides contain a glycerol backbone, whereas sphingolipids utilize sphingosine. Lipids found in biological membranes vary in acyl chain length and degree of saturation. Chains possess an even numbers of carbons typically between 14 and 24 with 16, 18, and 20. Chains with one or more doubly bonded carbons are unsaturated. These bonds are rigid and introduce kinks in the chain. These kinks cause irregularities or voids to appear in the array and, consequently, these molecules cannot be packed tightly. In contrast, in a fully saturated acyl chain the carbon–carbon atoms are covalently linked by single bonds. These carbon atoms are able to maximize the number of bonds with hydrogen atoms. As a result the chains can freely rotate about their carbon–carbon bonds and can pack tightly.

Fig. 7.10
figure 10

Membrane lipid and cholesterol structure. PC phosphatidylcholine (also abbreviated PtdCho), PE phosphatidylethanolamine (PtdEtn), SM sphingomyelin, Chol cholesterol. The inset depicts, in block diagram form, the skeletal structure of the molecules with a typical lipid shown on the left and a smaller cholesterol molecule pictured on the right. (Main figure from van Meer EMBO J. 24: 3159 © 2005 Reprinted with permission from John Wiley and Sons)

Cholesterol plays an important role in determining the fluidity of the membrane compartments. It is smaller than the phospholipids and sphingolipids. As the concentration of cholesterol increases the lipid membrane becomes less like a disordered gel and more like an ordered liquid in which the lipids are more tightly packed together. Three main types of lipid membranes are illustrated in Fig. 7.11. The upper panel depicts a liquid disordered membrane composed of unsaturated and fairly short phosphatidylcholine (or phosphatidylethanolamine) lipid molecules. At the other extreme the bottom panel illustrates the organization of a membrane composed of longer, saturated and fairly straight sphingomyelin molecules plus a considerable amount of cholesterol. This membrane structure is typical of a lipid raft .

Fig. 7.11
figure 11

Depiction of the lipid phases typical of biological membranes. From top to bottom: liquid-disordered (l d), solid gel (s o), and liquid-ordered (l o) in which there is a high cholesterol content (blue). The chain segment order (S) and diffusion constant (D T) for each of the phases are shown (from van Meer Nat. Rev. Mol. Cell Biol. 9: 112 © 2008 Reprinted by permission from Macmillan Publishers Ltd)

The biophysical properties of these membrane compartments are captured by phase diagrams such as the one shown in Fig. 7.12. This diagram summarizes the possible phases exhibited by mixtures containing various proportions of an unsaturated lipid, a saturated lipid, and cholesterol . In this figure, it can be seen that as the cholesterol content increases the liquid-ordered (l o) phase begins to dominate. Membrane compartments lacking cholesterol but with a high unsaturated lipid content are disordered (l d), while saturated lipids generate gel-like (s o) structures.

Fig. 7.12
figure 12

Structure of cholesterol and a lipid membrane phase diagram. (a) Rigid structure of the cholesterol molecule. (b) The phases of a hypothetical mixture of cholesterol, an unsaturated lipid Y (e.g., PC) and a saturated lipid Z (e.g., SM) at temperatures near or at the physiological temperature, 37 °C

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Beckerman, M. (2015). Prion Diseases. In: Fundamentals of Neurodegeneration and Protein Misfolding Disorders. Biological and Medical Physics, Biomedical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-22117-5_7

Download citation

Publish with us

Policies and ethics