Skip to main content

News on Eight Chip Technologies

  • Chapter
  • First Online:
  • 2094 Accesses

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

The eight chip technologies selected for the 2012 perspective on CHIPS 2020 advanced, with the exception of single-electron IC’s. Three of them merged into major cooperative R&D: The S3S initiative stands for Silicon-on-Insulator, 3D integration, and Subthreshold MOS, which we treated then and treat again extensively, particularly in differential logic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hoefflinger, B.: The future of 8 chip technologies, chapter 3. In: Hoefflinger, B. (ed.) CHIPS 2020—A Guide to the Future of Nanoelectronics, pp. 37–93. Springer, Berlin (2012). doi:10.1007/978-3-642-23096-7_3

    Google Scholar 

  2. Cathelin, A.: RF subcommittee. In ISSCC 2014 Trends, pp. 13–15 (2014), http://isscc.org

  3. Kim, S.H.: Germanium Source Tunnel Field Effect Transistors for Ultra-Low-Power Digital Logic. University of California Berkeley Tech. Report No. UCB/EECS-2012-87, May 2012, http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-87.html

  4. Hoefflinger, B.: Chips 2020—Ein Ausblick in die Halbleiterwelt von übermorgen, ELEKTRONIK, Heft 1/2000, Seite 10 ff., WEKA Medien, Jan 2000

    Google Scholar 

  5. Max. clock frequencies. In: ISSCC 2014 Trends, http://isscc.org

  6. IEEE S3S: SOI-3D-Subthreshold Microelectronics Technology Unified Conference, www.ieee.org

  7. Wilson, R., et al.: A 460 MHz at 397 mV, 2.6 GHz at 1.3 V, 32 b VLIW DSP, Embedding Fmax Tracking, 2014 ISSCC Dig. Technical Papers, paper 27.1, pp. 452–453, Feb 2014

    Google Scholar 

  8. Hsu, S., et al.: A 280 mV-to-1.1 V 256 b Reconfigurable SIMD Vector Permutation Engine with Two-Dimensional Shuffle in 22 nm CMOS, 2012 ISSCC Dig. Tech. Papers, pp. 178–180 (2012)

    Google Scholar 

  9. Jain, S., et al.: A 280 mV-to-1.2 V wide-operating-range IA-32 processor in 32 nm CMOS. In: 2012 ISSCC Digestive Technology Papers, pp. 66–68 (2012)

    Google Scholar 

  10. Kaul, H., Anders, M., et al.: A 1.45 GHz 52-to-162 GFLOPS/W variable-precision floating-point fused multiply-add unit with certainty-tracking in 32 nm CMOS. In: 2012 IEEE International Solid-State Circuit Conference (ISSCC), Digestive Technology Papers, pp. 182–183, Feb 2012

    Google Scholar 

  11. Sekar, D.C., Or-Bach, Z.: Monolithic 3D-IC’s with single crystal silicon layers

    Google Scholar 

  12. Courtland, R.: IEEE Spectrum 2014

    Google Scholar 

  13. Handy, J.: An alternative kind of vertical 3D NAND string, published Nov. 8, 2013, http://thememoryguy.com/wp-content/uploads/2

  14. Grube, R., Dudek, V., Hoefflinger, B., Schau, M.: 0.5 V CMOS logic delivering 25 million 16 × 16 bit multiplications at 400 fJ based on a 100 nm T-Gate SOI technology. Best Paper Award. IEEE Computer Elements Workshop, Mesa, AZ, 2000, 5 p

    Google Scholar 

  15. Jung, B.H., Kang, S.C., et al.: Novel bootstrapped CMOS differential logic family for ultra-low voltage SoC’s. IEICE Electron. Expr. 5(18), 711–717 (2008). doi:10.1587/elex.5.711

    Article  Google Scholar 

  16. Reynders, N., Dehaene, W.: A 210 mV 5 MHz variation-resilient near-threshold JPEG encoder in 40 nm CMOS, 2014 ISSCC Digestive Digital Papers, paper 27.3, pp. 457–458, Feb 2014 (and private communication)

    Google Scholar 

  17. Reynders, N., Dehaene, W.: Variation-resilient building blocks for ultra-low-energy sub-threshold design. IEEE Trans. Circuits Syst. II 59(2), 898–902 (2012)

    Article  Google Scholar 

  18. Pawlowski, R., Krimer, E., et al.: A 530 mV 10-lane SIMD processor with variation-resiliency in 45 nm SOI. In: 2012 IEEE International Solid-State Circuits Conference (ISSCC), Digestive Technology Papers, pp. 492–493, Feb 2012

    Google Scholar 

  19. Horowitz, M.: Computing’s energy problem (and what we can do about it), ISSCC 2014, paper 1.1, pp. 10–14, Feb 2014

    Google Scholar 

  20. Razavi, B.: The Cross-Coupled Pair, Part I, Solid-State Circuits Magazine. Part II, Solid-State Circuits Magazine, Fall 2014, pp. 2–12 (2014)

    Google Scholar 

  21. Borkar, S.: Exascale Computing—Fact or Fiction? SSCS Webinar (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Hoefflinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hoefflinger, B. (2016). News on Eight Chip Technologies. In: Höfflinger, B. (eds) CHIPS 2020 VOL. 2. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-319-22093-2_1

Download citation

Publish with us

Policies and ethics