Advertisement

Ultrafast Vibrational Dynamics of Phospholipid Hydration Shells

  • René CostardEmail author
Chapter
  • 305 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Ultrafast vibrational dynamics of bulk water have been studied intensively since the advent of ultrashort mid-infrared pulses with pulse energies in the microjoule regime. First experiments focussed on the local OH stretching vibration of isotopically diluted water, i.e., HOD in D\(_2\)O. Pump-probe data, partly measured with insufficient time resolution, found OH stretching decays on a 700 fs time scale that depends slightly on the temperature and OH stretching frequency.

Keywords

Reverse Micelle Bulk Water Hydration Shell Excited State Absorption Hydration Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. Graener, G. Seifert, A. Laubereau, New spectroscopy of water using tunable picosecond pulses in the infrared. Phys. Rev. Lett. 66, 2092–2095 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    R. Laenen, C. Rauscher, A. Laubereau, Dynamics of local substructures in water observed by ultrafast infrared hole burning. Phys. Rev. Lett. 80, 2622–2625 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    G.M. Gale, G. Gallot, N. Lascoux, Frequency-dependent vibrational population relaxation time of the OH stretching mode in liquid water. Chem. Phys. Lett. 311, 123–125 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    G.M. Gale, G. Gallot, F. Hache, N. Lascoux, S. Bratos, J.-C. Leicknam, Femtosecond dynamics of hydrogen bonds in liquid water: a real time study. Phys. Rev. Lett. 82, 1068–1071 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    S. Woutersen, U. Emmerichs, H.J. Bakker, Femtosecond mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component structure. Science 278, 658–660 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    S. Woutersen, U. Emmerichs, H.-K. Nienhuys, H.J. Bakker, Anomalous temperature dependence of vibrational lifetimes in water and ice. Phys. Rev. Lett. 81, 1106–1109 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    S. Woutersen, H.J. Bakker, Hydrogen bond in liquid water as a Brownian oscillator. Phys. Rev. Lett. 83, 2077–2080 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    R. Rey, J.T. Hynes, Vibrational energy relaxation of HOD in liquid D\(_2\)O. J. Chem. Phys. 104, 2356–2368 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    C.P. Lawrence, J.L. Skinner, Vibrational spectroscopy of HOD in liquid D\(_2\)O. I. Vibrational energy relaxation. J. Chem. Phys. 117, 5827–5838 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    C.P. Lawrence, J.L. Skinner, Vibrational spectroscopy of HOD in liquid D\(_2\)O. VI. Intramolecular and intermolecular vibrational energy flow. J. Chem. Phys. 119, 1623–1633 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    R. Rey, K.B. Møller, J.T. Hynes, Ultrafast vibrational population dynamics of water and related systems: a theoretical perspective. Chem. Rev. 104, 1915–1928 (2004)CrossRefGoogle Scholar
  12. 12.
    J. Stenger, D. Madsen, P. Hamm, E.T.J. Nibbering, T. Elsaesser, Ultrafast vibrational dephasing of liquid water. Phys. Rev. Lett. 87, 027401 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    S. Yeremenko, M.S. Pshenichnikov, D.A. Wiersma, Hydrogen-bond dynamics in water explored by heterodyne-detected photon echo. Chem. Phys. Lett. 369, 107–113 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    J.J. Loparo, S.T. Roberts, A. Tokmakoff, Multidimensional infrared spectroscopy of water. I. Vibrational dynamics in two-dimensional IR line shapes. J. Chem. Phys. 125, 194521 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    J.J. Loparo, S.T. Roberts, A. Tokmakoff, Multidimensional infrared spectroscopy of water. II. Hydrogen bond switching dynamics. J. Chem. Phys. 125, 194522 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    C.P. Lawrence, J.L. Skinner, Vibrational spectroscopy of HOD in liquid D\(_2\)O. III. Spectral diffusion, and hydrogen-bonding and rotational dynamics. J. Chem. Phys. 118, 264–272 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    K.B. Møller, R. Rey, J.T. Hynes, Hydrogen bond dynamics in water and ultrafast infrared spectroscopy: a theoretical study. J. Phys. Chem. A 108, 1275–1289 (2004)CrossRefGoogle Scholar
  18. 18.
    C.J. Fecko, J.D. Eaves, J.J. Loparo, A. Tokmakoff, P.L. Geissler, Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science 301, 1698–1702 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    J.B. Asbury, T. Steinel, K. Kwak, S.A. Corcelli, C.P. Lawrence, J.L. Skinner, M.D. Fayer, Dynamics of water probed with vibrational echo correlation spectroscopy. J. Chem. Phys. 121, 12431–12446 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    A.J. Lock, H.J. Bakker, Temperature dependence of vibrational relaxation in liquid H\(_2\)O. J. Chem. Phys. 117, 1708–1713 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    S. Ashihara, N. Huse, A. Espagne, E.T.J. Nibbering, T. Elsaesser, Vibrational couplings and ultrafast relaxation of the O-H bending mode in liquid H\(_2\)O. Chem. Phys. Lett. 424, 66–70 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    J. Lindner, P. Vöhringer, M.S. Pshenichnikov, D. Cringus, D.A. Wiersma, M. Mostovoy, Vibrational relaxation of pure liquid water. Chem. Phys. Lett. 421, 329–333 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    A. Pakoulev, Z. Wang, Y. Pang, D.D. Dlott, Vibrational energy relaxation pathways of water. Chem. Phys. Lett. 380, 404–410 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    N. Huse, S. Ashihara, E.T.J. Nibbering, T. Elsaesser, Ultrafast vibrational relaxation of O-H bending and librational excitations in liquid H\(_2\)O. Chem. Phys. Lett. 404, 389–393 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    F. Ingrosso, R. Rey, T. Elsaesser, J.T. Hynes, Ultrafast energy transfer from the intramolecular bending vibration to librations in liquid water. J. Phys. Chem. A 113, 6657–6665 (2009)CrossRefGoogle Scholar
  26. 26.
    R. Rey, F. Ingrosso, T. Elsaesser, J.T. Hynes, Pathways for H\(_2\)O bend vibrational relaxation in liquid water. J. Phys. Chem. A 113, 8949–8962 (2009)CrossRefGoogle Scholar
  27. 27.
    R. Rey, J.T. Hynes, Tracking energy transfer from excited to accepting modes: application to water bend vibrational relaxation. Phys. Chem. Chem. Phys. 14, 6332–6342 (2012)CrossRefGoogle Scholar
  28. 28.
    S. Ashihara, N. Huse, A. Espagne, E.T.J. Nibbering, T. Elsaesser, Ultrafast structural dynamics of water induced by dissipation of vibrational energy. J. Phys. Chem. A 111, 743–746 (2007)CrossRefGoogle Scholar
  29. 29.
    J. Petersen, K.B. Møller, R. Rey, J.T. Hynes, Ultrafast librational relaxation of H\(_2\)O in liquid water. J. Phys. Chem. B 117, 4541–4552 (2013)CrossRefGoogle Scholar
  30. 30.
    M.L. Cowan, B.D. Bruner, N. Huse, J.R. Dwyer, B. Chugh, E.T.J. Nibbering, T. Elsaesser, R.J.D. Miller, Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H\(_2\)O. Nature 434, 199–202 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    D. Kraemer, M.L. Cowan, A. Paarmann, N. Huse, E.T.J. Nibbering, T. Elsaesser, R.J.D. Miller, Temperature dependence of the two-dimensional infrared spectrum of liquid H\(_2\)O. Proc. Natl. Acad. Sci. USA 105, 437–442 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    S. Woutersen, H.J. Bakker, Resonant intermolecular transfer of vibrational energy in liquid water. Nature 402, 507–509 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    H. Graener, G. Seifert, Vibrational and orientational relaxation of monomeric water molecules in liquids. J. Chem. Phys. 98, 36–45 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    G. Seifert, H. Graener, Solvent dependence of OH bend vibrational relaxation of monomeric water molecules in liquids. J. Chem. Phys. 127, 224505 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    A.M. Dokter, S. Woutersen, H.J. Bakker, Anomalous slowing down of the vibrational relaxation of liquid water upon nanoscale confinement. Phys. Rev. Lett. 94, 178301 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    D. Cringus, J. Lindner, M.T. Milder, M.S. Pshenichnikov, P. Vöhringer, D.A. Wiersma, Femtosecond water dynamics in reverse-micellar nanodroplets. Chem. Phys. Lett. 408, 162–168 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    D. Cringus, A. Bakulin, J. Lindner, P. Vöhringer, M.S. Pshenichnikov, D.A. Wiersma, Ultrafast energy transfer in water-AOT reverse micelles. J. Phys. Chem. B 111, 14193–14207 (2007)CrossRefGoogle Scholar
  38. 38.
    I.R. Piletic, D.E. Moilanen, D.B. Spry, N.E. Levinger, M.D. Fayer, Testing the core/shell model of nanoconfined water in reverse micelles using linear and nonlinear IR spectroscopy. J. Phys. Chem. A 110, 4985–4999 (2006)CrossRefGoogle Scholar
  39. 39.
    A.A. Bakulin, D. Cringus, M.S. Pshenichnikov, D.A. Wiersma, Frozen dynamics and insulation of water at the lipid interface, in Ultrafast Phenomena XVI, ed. by P. Corkum, S. Silvestri, K.A. Nelson, E. Riedle, R.W. Schoenlein (Springer, Berlin, 2009), pp. 514–516CrossRefGoogle Scholar
  40. 40.
    E.E. Fenn, D.B. Wong, M.D. Fayer, Water dynamics in small reverse micelles in two solvents: two-dimensional infrared vibrational echoes with two-dimensional background subtraction. J. Chem. Phys. 134, 054512 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    E.E. Fenn, D.B. Wong, C.H. Giammanco, M.D. Fayer, Dynamics of water at the interface in reverse micelles: measurements of spectral diffusion with two-dimensional infrared vibrational echoes. J. Phys. Chem. B 115, 11658–11670 (2011)CrossRefGoogle Scholar
  42. 42.
    V.V. Volkov, D.J. Palmer, R. Righini, Heterogeneity of water at the phospholipid membrane interface. J. Phys. Chem. B 111, 1377–1383 (2007)CrossRefGoogle Scholar
  43. 43.
    V.V. Volkov, D.J. Palmer, R. Righini, Distinct water species confined at the interface of a phospholipid membrane. Phys. Rev. Lett. 99, 078302 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    V.V. Volkov, Y. Takaoka, R. Righini, What are the sites water occupies at the interface of a phospholipid membrane? J. Phys. Chem. B 113, 4119–4124 (2009)CrossRefGoogle Scholar
  45. 45.
    W. Zhao, D.E. Moilanen, E.E. Fenn, M.D. Fayer, Water at the surfaces of aligned phospholipid multibilayer model membranes probed with ultrafast vibrational spectroscopy. J. Am. Chem. Soc. 130, 13927–13937 (2008)CrossRefGoogle Scholar
  46. 46.
    X. Chen, W. Hua, Z. Huang, H.C. Allen, Interfacial water structure associated with phospholipid membranes studied by phase-sensitive vibrational sum frequency generation spectroscopy. J. Am. Chem. Soc. 132, 11336–11342 (2010)CrossRefGoogle Scholar
  47. 47.
    J.A. Mondal, S. Nihonyanagi, S. Yamaguchi, T. Tahara, Three distinct water structures at a zwitterionic lipid/water interface revealed by heterodyne-detected vibrational sum frequency generation. J. Am. Chem. Soc. 134, 7842–7850 (2012)CrossRefGoogle Scholar
  48. 48.
    Z. Zhang, L. Piatkowski, H.J. Bakker, M. Bonn, Communication: interfacial water structure revealed by ultrafast two-dimensional surface vibrational spectroscopy. J. Chem. Phys. 135, 021101 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    M. Yang, Ł. Szyc, T. Elsaesser, Vibrational dynamics of the water shell of DNA studied by femtosecond two-dimensional infrared spectroscopy. J. Photochem. Photobiol. A 234, 49–56 (2012)CrossRefGoogle Scholar
  50. 50.
    K.E. Furse, S.A. Corcelli, The dynamics of water at DNA interfaces: computational studies of hoechst 33258 bound to DNA. J. Am. Chem. Soc. 130, 13103–13109 (2008)CrossRefGoogle Scholar
  51. 51.
    H. Binder, Water near lipid membranes as seen by infrared spectroscopy. Eur. Biophys. J. 36, 265–279 (2007)CrossRefGoogle Scholar
  52. 52.
    D. Cringus, T.l C. Jansen, M.S. Pshenichnikov, D.A. Wiersma, Ultrafast anisotropy dynamics of water molecules dissolved in acetonitrile. J. Chem. Phys. 127, 084507 (2007)ADSCrossRefGoogle Scholar
  53. 53.
    T.l C. Jansen, D. Cringus, M.S. Pshenichnikov, Dissimilar dynamics of coupled water vibrations. J. Phys. Chem. A 113, 6260–6265 (2009)CrossRefGoogle Scholar
  54. 54.
    D.S. Venables, C.A. Schmuttenmaer, Spectroscopy and dynamics of mixtures of water with acetone, acetonitrile, and methanol. J. Chem. Phys. 113, 11222–11236 (2000)ADSCrossRefGoogle Scholar
  55. 55.
    D.S. Venables, K. Huang, C.A. Schmuttenmaer, Effect of reverse micelle size on the librational band of confined water and methanol. J. Phys. Chem. B 105, 9132–9138 (2001)CrossRefGoogle Scholar
  56. 56.
    C.C. Cooksey, B.J. Greer, E.J. Heilweil, Terahertz spectroscopy of l-proline in reverse aqueous micelles. Chem. Phys. Lett. 467, 424–429 (2009)ADSCrossRefGoogle Scholar
  57. 57.
    D.E. Rosenfeld, C.A. Schmuttenmaer, Dynamics of water confined within reverse micelles. J. Phys. Chem. B 110, 14304–14312 (2006)CrossRefGoogle Scholar
  58. 58.
    D.E. Rosenfeld, C.A. Schmuttenmaer, Dynamics of the water hydrogen bond network at ionic, nonionic, and hydrophobic interfaces in nanopores and reverse micelles. J. Phys. Chem. B 115, 1021–1031 (2011)CrossRefGoogle Scholar
  59. 59.
    T. Yagasaki, S. Saito, Molecular dynamics simulation of nonlinear spectroscopies of intermolecular motions in liquid water. Acc. Chem. Res. 42, 1250–1258 (2009)CrossRefGoogle Scholar
  60. 60.
    S. Ashihara, S. Fujioka, K. Shibuya, Temperature dependence of vibrational relaxation of the OH bending excitation in liquid H\(_2\)O. Chem. Phys. Lett. 502, 57–62 (2011)ADSCrossRefGoogle Scholar
  61. 61.
    H.R. Zelsmann, Temperature dependence of the optical constants for liquid H\(_2\)O and D\(_2\)O in the far IR region. J. Mol. Struct. 350, 95–114 (1995)ADSCrossRefGoogle Scholar
  62. 62.
    T. Förster, Zwischenmolekulare Energiewanderung und Fluoreszenz. German. Ann. Phys. 437, 55–75 (1948)ADSCrossRefGoogle Scholar
  63. 63.
    G. Seifert, T. Patzlaff, H. Graener, Size dependent ultrafast cooling of water droplets in microemulsions by picosecond infrared spectroscopy. Phys. Rev. Lett. 88, 147402 (2002)ADSCrossRefGoogle Scholar
  64. 64.
    J.C. Deàk, Y. Pang, T.D. Sechler, Z. Wang, D.D. Dlott, Vibrational energy transfer across a reverse micelle surfactant layer. Science 306, 473–476 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Max-Born-InstitutBerlinGermany

Personalised recommendations