Ultrafast Vibrational Dynamics of Phospholipid Hydration Sites

  • René CostardEmail author
Part of the Springer Theses book series (Springer Theses)


Time-averaged structures of self-assembled phospholipids are well known, whereas time-resolved information about lipid-lipid and lipid-water interactions is mostly deduced from MD simulations and—to some extent—from NMR measurements (cf. Sect.  1.1). Vibrational dynamics of phosphate vibrations in phospholipids have remained unexplored. Slightly more is known about phospholipid hydration-shell vibrational dynamics and a review is given in Chap.  4.


Water Pool Excited State Absorption Hydration Level Vibrational Dynamic Transient Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    U.P. Fringeli, H.H. Günthard, Infrared membrane spectroscopy, in Molecular Biology, Biochemistry and Biophysics, ed. by E. Grell (Springer, Berlin, 1981), pp. 270–332Google Scholar
  2. 2.
    M. Jackson, H.H. Mantsch, Biomembrane structure from FT-IR spectroscopy. Spectrochim. Acta Rev. 15, 53–69 (1993)Google Scholar
  3. 3.
    R.N.A.H. Lewis, R.N. McElhaney, Fourier transform infrared spectroscopy in the study of hydrated lipids and lipid bilayer membranes, in Infrared Spectroscopy of Biomolecules, ed. by H.H. Mantsch, D. Chapman (Wiley-Liss, Inc., New York, 1996), pp. 195–202Google Scholar
  4. 4.
    W.R. Angus, C.R. Bailey, J.B. Hale, C.K. Ingold, A.H. Leckie, C.G. Raisin, J.W. Thompson, C.L. Wilson, Structure of benzene. Part VIII. Assignment of vibration frequencies of benzene and hexadeuterobenzene. J. Chem. Soc. 971–987 (1936)Google Scholar
  5. 5.
    V.V. Volkov, R. Chelli, W. Zhuang, F. Nuti, Y. Takaoka, A.M. Papini, S. Mukamel, R. Righini, Electrostatic interactions in phospholipid membranes revealed by coherent 2D IR spectroscopy. Proc. Natl. Acad. Sci. USA 104, 15323–15327 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Ł. Szyc, M. Yang, T. Elsaesser, Ultrafast energy exchange via water-phosphate interactions in hydrated DNA. J. Phys. Chem. B 114, 7951–7957 (2010)CrossRefGoogle Scholar
  7. 7.
    M. Pasenkiewicz-Gierula, Y. Takaoka, H. Miyagawa, K. Kitamura, A. Kusumi, Charge pairing of headgroups in phosphatidylcholine membranes: a molecular dynamics simulation study. Biophys. J. 76, 1228–1240 (1999)CrossRefGoogle Scholar
  8. 8.
    R. Hielscher, P. Hellwig, Specific far infrared spectroscopic properties of phospholipids. Spectrosc. Int. J. 27, 525–532 (2012)CrossRefGoogle Scholar
  9. 9.
    Y. Guan, C.J. Wurrey, G.J. Thomas Jr., Vibrational analysis of nucleic acids. I. The phosphodiester group in dimethyl phosphate model compounds: (CH\(^{3}\)O)\(_{2}\)PO\(_{2}^{-}\), (CD\(_3\)O)\(_{2}\)PO\(_{2}^{-}\), and (\(^{13}\)CH\(_{3}\)O)\(_{2}\)PO\(_{2}^{-}\). Biophys. J. 66, 225–235 (1994)Google Scholar
  10. 10.
    H. Binder, W. Pohle, Structural aspects of lyotropic solvation-induced transitions in phosphatidylcholine and phosphatidylethanolamine assemblies revealed by infrared spectroscopy. J. Phys. Chem. B 104, 12039–12048 (2000)CrossRefGoogle Scholar
  11. 11.
    A. Blume, W. Huebner, G. Messner, Fourier transform infrared spectroscopy of \(^{13}\)C=O labeled phospholipids hydrogen bonding to carbonyl groups. Biochemistry 27, 8239–8249 (1988)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Max-Born-InstitutBerlinGermany

Personalised recommendations