Advertisement

Vibrational Spectroscopy

  • René CostardEmail author
Chapter
  • 319 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

A description of a quantum-mechanical system requires the knowledge of its Hamiltonian H.

Keywords

Reverse Micelle Excited State Absorption Diffractive Optic Element Population Time Bath Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Born, R. Oppenheimer, Zur Quantentheorie der Molekeln. German. Ann. Phys. 389, 457–484 (1927)CrossRefGoogle Scholar
  2. 2.
    G. Herzberg, Molecular Spectra and Molecular Structure I Spectra of Diatomic Molecules (D. Van Nostrand Company Inc, New York, 1950)Google Scholar
  3. 3.
    G. Herzberg, Molecular Spectra and Molecular Structure II Infrared and Raman Spectra of Polyatomic Molecules (Krieger Publishing Company, Malabar, 1991)Google Scholar
  4. 4.
    P. Hamm, M. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University Press, Cambridge, 2011)CrossRefGoogle Scholar
  5. 5.
    L. Pauling, E.B. Wilson, Introduction to Quantum Mechanics (McGraw-Hill Book Company, Inc., New York, 1935)Google Scholar
  6. 6.
    E. Schrödinger, Quantisierung als Eigenwertproblem. German. Ann. Phys. 384, 489–527 (1926)CrossRefGoogle Scholar
  7. 7.
    E. Fermi, Üâber den Ramaneffekt des Kohlendioxyds. German. Z. Phys. 71, 250–259 (1931)ADSCrossRefGoogle Scholar
  8. 8.
    C.V. Raman, The molecular scattering of light. Nobel Lecture (1930)Google Scholar
  9. 9.
    B.S. Hudson, Vibrational spectroscopy using inelastic neutron scattering: overview and outlook. Vib. Spectrosc. 42, 25–32 (2006)CrossRefGoogle Scholar
  10. 10.
    R.G. Gordon, Correlation functions for molecular motion. Adv. Magn. Reson. 3, 1–42 (1968)CrossRefGoogle Scholar
  11. 11.
    P.W. Anderson, P.R. Weiss, Exchange narrowing in paramagnetic resonance. Rev. Mod. Phys. 25, 269–276 (1953)ADSCrossRefGoogle Scholar
  12. 12.
    R. Kubo, A stochastic theory of line-shape and relaxation, in Fluctuation, Relaxation and Resonance in Magenetic Systems, ed. by D. ter Maar (Oliver & Boyd, Edinburgh, 1962)Google Scholar
  13. 13.
    R. Kubo, A stochastic theory of lineshape. Adv. Chem. Phys. 15, 101–127 (1969)Google Scholar
  14. 14.
    W.G. Rothschild, Motional characteristics of large molecules from their Raman and infrared band contours: vibrational dephasing. J. Chem. Phys. 65, 455–462 (1976)ADSCrossRefGoogle Scholar
  15. 15.
    N. Bloembergen, E.M. Purcell, R.V. Pound, Relaxation effects in nuclear magnetic resonance absorption. Phys. Rev. 73, 679–712 (1948)ADSCrossRefGoogle Scholar
  16. 16.
    P.A.M. Dirac, The quantum theory of the emission and absorption of radiation. Proc. R. Soc. Lond., Ser. A 114, 243–265 (1927)ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    D.W. Oxtoby, Vibrational population relaxation in liquids. Adv. Chem. Phys. 47, 487–519 (1981)Google Scholar
  18. 18.
    B.J. Berne, Time-depent properties of condensed media, in Physical Chemistry: An Advanced Treatise, vol. 8B, ed. by D. Henderson (Academic, New York, 1971), pp. 540–713Google Scholar
  19. 19.
    J.S. Bader, B.J. Berne, Quantum and classical relaxation rates from classical simulations. J. Chem. Phys. 100, 8359–8366 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    J.L. Skinner, Semiclassical approximations to golden rule rate constants. J. Chem. Phys. 107, 8717–8718 (1997)ADSCrossRefGoogle Scholar
  21. 21.
    W.S. Benedict, E.K. Plyler, Absorption spectra of water vapor and carbon dioxide in the region of 2.7 microns. J. Res. Natl. Bur. Stand. 46, 246–259 (1951)CrossRefGoogle Scholar
  22. 22.
    A. Novak, Hydrogen bonding in solids correlation of spectroscopic and crystallographic data, Large Molecules, vol. 18, Structure and Bonding (Springer, Berlin, 1974), pp. 177–216CrossRefGoogle Scholar
  23. 23.
    C.M. Huggins, G.C. Pimentel, Systematics of the infrared spectral properties of hydrogen bonding systems: frequency shift, half width and intensity. J. Phys. Chem. 60, 1615–1619 (1956)CrossRefGoogle Scholar
  24. 24.
    S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, Oxford, 1995)Google Scholar
  25. 25.
    M. Cho, Two-dimensional Optical Spectroscopy (CRC Press, Taylor & Francis Group, Boca Raton, 2009)CrossRefGoogle Scholar
  26. 26.
    R.W. Boyd, Nonlinear Optics, 3rd edn. (Elsevier, 2008)Google Scholar
  27. 27.
    M.D. Fayer, Dynamics of molecules in condensed phases: Picosecond holographic grating experiments. Annu. Rev. Phys. Chem. 33, 63–87 (1982)ADSCrossRefGoogle Scholar
  28. 28.
    K. Duppen, D.A. Wiersma, Picosecond multiple-pulse experiments involving spatial and frequency gratings: a unifying nonperturbational approach. J. Opt. Soc. Am. B 3, 614–621 (1986)ADSCrossRefGoogle Scholar
  29. 29.
    S.A. Corcelli, J.L. Skinner, Infrared and Raman line shapes of dilute HOD in liquid H\(_2\)O and D\(_2\)O from 10 to 90\(^\circ {\rm C}\). J. Phys. Chem. A 109, 6154–6165 (2005)CrossRefGoogle Scholar
  30. 30.
    S.M. Gallagher Faeder, D.M. Jonas, Two-dimensional electronic correlation and relaxation spectra: Theory and model calculations. J. Phys. Chem. A 103, 10489–10505 (1999)CrossRefGoogle Scholar
  31. 31.
    M. Khalil, N. Demirdöven, A. Tokmakoff, Obtaining absorptive line shapes in two-dimensional infrared vibrational correlation spectra. Phys. Rev. Lett. 90, 047401 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    K. Okumura, A. Tokmakoff, Y. Tanimura, Two-dimensional line-shape analysis of photon-echo signal. Chem. Phys. Lett. 314, 488–495 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    A. Tokmakoff, Two-dimensional line shapes derived from coherent third-order nonlinear spectroscopy. J. Phys. Chem. A 104, 4247–4255 (2000)CrossRefGoogle Scholar
  34. 34.
    K. Kwak, S. Park, I.J. Finkelstein, M.D. Fayer, Frequency-frequency correlation functions and apodization in two-dimensional infrared vibrational echo spectroscopy: a new approach. J. Chem. Phys. 127, 124503 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    K. Lazonder, M.S. Pshenichnikov, D.A. Wiersma, Easy interpretation of optical two-dimensional correlation spectra. Opt. Lett. 31, 3354–3356 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    K. Kwac, M. Cho, Two-color pump-probe spectroscopies of two- and three-level systems: 2-dimensional line shapes and solvation dynamics. J. Phys. Chem. A 107, 5903–5912 (2003)CrossRefGoogle Scholar
  37. 37.
    G. Stirnemann, J.T. Hynes, D. Laage, Water hydrogen bond dynamics in aqueous solutions of amphiphiles. J. Phys. Chem. B 114, 3052–3059 (2010)CrossRefGoogle Scholar
  38. 38.
    A. Ghosh, R.M. Hochstrasser, A peptide’s perspective of water dynamics. Chem. Phys. 390, 1–13 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    M. Khalil, A. Tokmakoff, Signatures of vibrational interactions in coherent two-dimensional infrared spectroscopy. Chem. Phys. 266, 213–230 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    S. Woutersen, P. Hamm, Nonlinear two-dimensional vibrational spectroscopy of peptides. J. Phys.: Condens. Matter 14, R1035–R1062 (2002)ADSGoogle Scholar
  41. 41.
    M. Chachisvilis, H. Fidder, V. Sundström, Electronic coherence in pseudo twocolour pump-probe spectroscopy. Chem. Phys. Lett. 234, 141–150 (1995)ADSCrossRefGoogle Scholar
  42. 42.
    T. Tao, Time-dependent fluorescence depolarization and Brownian rotational diffusion coefficients of macromolecules. Biopolymers 8, 609–632 (1969)CrossRefGoogle Scholar
  43. 43.
    G.R. Fleming, J.M. Morris, G.W. Robinson, Direct observation of rotational diffusion by picosecond spectroscopy. Chem. Phys. 17, 91–100 (1976)ADSCrossRefGoogle Scholar
  44. 44.
    H. Graener, G. Seifert, A. Laubereau, Direct observation of rotational relaxation times by time-resolved infrared spectroscopy. Chem. Phys. Lett. 172, 435–439 (1990)ADSCrossRefGoogle Scholar
  45. 45.
    P.F. Moulton, Spectroscopic and laser characteristics of Ti:Al2O3. J. Opt. Soc. Am. B 3, 125–133 (1986)ADSCrossRefGoogle Scholar
  46. 46.
    R.A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A.M. Weiner, M. Woerner, Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 \(\mu \)m. J. Opt. Soc. Am. B 17, 2086–2094 (2000)ADSCrossRefGoogle Scholar
  47. 47.
    R. Trebino, Frequency-resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, Boston, 2000)CrossRefGoogle Scholar
  48. 48.
    R. Trebino, K.W. DeLong, D.N. Fittinghoff, J.N. Sweetser, M.A. Krumbügel, B.A. Richman, D.J. Kane, Measuring ultrashort laser pulses in the timefrequency domain using frequency-resolved optical gating. Rev. Sci. Instrum. 68, 3277–3295 (1997)ADSCrossRefGoogle Scholar
  49. 49.
    C. Iaconis, I.A. Walmsley, Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses. Opt. Lett. 23, 792–794 (1998)ADSCrossRefGoogle Scholar
  50. 50.
    G. Stibenz, P. Staudt, C. Lukas, S.-P. Gorza, and I. A. Walmsley, Fully automated, phase corrected long crystal SPIDER for the characterization of broadband pulses, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (2008)Google Scholar
  51. 51.
    Q. Wu, X.-C. Zhang, Free-space electro-optic sampling of terahertz beams. Appl. Phys. Lett. 67, 3523–3525 (1995)ADSCrossRefGoogle Scholar
  52. 52.
    P. Hamm, M. Lim, R.M. Hochstrasser, Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy. J. Phys. Chem. B 102, 6123–6138 (1998)CrossRefGoogle Scholar
  53. 53.
    M.L. Cowan, J.P. Ogilvie, R.J.D. Miller, Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes. Chem. Phys. Lett. 386, 184–189 (2004)ADSCrossRefGoogle Scholar
  54. 54.
    T. Brixner, T. Mančal, I.V. Stiopkin, G.R. Fleming, Phase-stabilized twodimensional electronic spectroscopy. J. Chem. Phys. 121, 4221–4236 (2004)ADSCrossRefGoogle Scholar
  55. 55.
    V. Volkov, R. Schanz, P. Hamm, Active phase stabilization in Fourier-transform two-dimensional infrared spectroscopy. Opt. Lett. 30, 2010–2012 (2005)ADSCrossRefGoogle Scholar
  56. 56.
    L.P. DeFlores, R.A. Nicodemus, A. Tokmakoff, Two-dimensional Fourier transform spectroscopy in the pump-probe geometry. Opt. Lett. 32, 2966–2968 (2007)ADSCrossRefGoogle Scholar
  57. 57.
    J. Helbing, P. Hamm, Compact implementation of Fourier transform twodimensional IR spectroscopy without phase ambiguity. J. Opt. Soc. Am. B 28, 171–178 (2011)ADSCrossRefGoogle Scholar
  58. 58.
    S.-H. Shim, M.T. Zanni, How to turn your pump-probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping. Phys. Chem. Chem. Phys. 11, 748–761 (2009)CrossRefGoogle Scholar
  59. 59.
    W. Kuehn, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, Two-dimensional terahertz correlation spectra of electronic excitations in semiconductor quantum wells. J. Phys. Chem. B 115, 5448–5455 (2011)CrossRefGoogle Scholar
  60. 60.
    C.E. Shannon, Communication in the presence of noise. Proc. IEEE 37, 10–21 (1949)MathSciNetADSGoogle Scholar
  61. 61.
    L. Lepetit, G. Chériaux, M. Joffre, Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. J. Opt. Soc. Am. B 12, 2467–2474 (1995)ADSCrossRefGoogle Scholar
  62. 62.
    N. Huse, Multidimensional vibrational spectroscopy of hydrogen-bonded systems in the liquid phase: Coupling mechanisms and structural dynamics. Ph.D. thesis. Humboldt Universität zu Berlin, 2006Google Scholar
  63. 63.
    M. Yang, Ultrafast two-dimensional infrared spectroscopy of hydrogen-bonded base pairs and hydrated DNA. Ph.D. thesis. Humboldt Universität zu Berlin, 2012Google Scholar
  64. 64.
    T.K. De, A. Maitra, Solution behaviour of Aerosol OT in non-polar solvents. Adv. Colloid Interface Sci. 59, 95–193 (1995)CrossRefGoogle Scholar
  65. 65.
    C.R. Caryl, Sulfosuccinic esters. Structure and wetting power. Ind. Eng. Chem. 33, 731–737 (1941)CrossRefGoogle Scholar
  66. 66.
    C.R. Caryl, W.P. Ericks, Esters of sodium sulfosuccinic acid. Ind. Eng. Chem. 31, 44–47 (1939)CrossRefGoogle Scholar
  67. 67.
    R.W. Mattoon, M.B. Mathews, Micelles in non-aqueous media. J. Chem. Phys. 17, 496–497 (1949)ADSCrossRefGoogle Scholar
  68. 68.
    M.B. Mathews, E. Hirschhorn, Solubilization and micelle formation in a hydrocarbon medium. J. Colloid Sci. 8, 86–96 (1953)CrossRefGoogle Scholar
  69. 69.
    M. Zulauf, H.F. Eicke, Inverted micelles and microemulsions in the ternary system water/Aerosol-OT/isooctane as studied by photon correlation spectroscopy. J. Phys. Chem. 83, 480–486 (1979)CrossRefGoogle Scholar
  70. 70.
    M.-P. Pileni, T. Zemb, C. Petit, Solubilization by reverse micelles: solute localization and structure perturbation. Chem. Phys. Lett. 118, 414–420 (1985)ADSCrossRefGoogle Scholar
  71. 71.
    M. Wong, J.K. Thomas, T. Nowak, Structure and state of water in reversed micelles. 3. J. Am. Chem. Soc. 99, 4730–4736 (1977)CrossRefGoogle Scholar
  72. 72.
    R.E. Riter, D.M. Willard, N.E. Levinger, Water immobilization at surfactant interfaces in reverse micelles. J. Phys. Chem. B 102, 2705–2714 (1998)CrossRefGoogle Scholar
  73. 73.
    J. Faeder, B.M. Ladanyi, Molecular dynamics simulations of the interior of aqueous reverse micelles. J. Phys. Chem. B 104, 1033–1046 (2000)CrossRefGoogle Scholar
  74. 74.
    P.L. Luisi, M. Giomini, M.P. Pileni, B.H. Robinson, Reverse micelles as hosts for proteins and small molecules. Biochim. Biophys. Acta, Rev. Biomembr. 947, 209–246 (1988)CrossRefGoogle Scholar
  75. 75.
    M.P. Pileni, Reverse micelles as microreactors. J. Phys. Chem. 97, 6961–6973 (1993)CrossRefGoogle Scholar
  76. 76.
    P. Walde, A.M. Giuliani, C.A. Boicelli, P.L. Luisi, Phospholipid-based reverse micelles. Chem. Phys. Lipids 53, 265–288 (1990)CrossRefGoogle Scholar
  77. 77.
    N. Kučerka, S. Tristram-Nagle, J.F. Nagle, Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains. J. Membr. Biol. 208, 193–202 (2006)CrossRefGoogle Scholar
  78. 78.
    C.A. Boicelli, M. Giomini, A.M. Giuliani, Infrared characterization of different water types inside reverse micelles. Appl. Spectrosc. 38, 537–539 (1984)ADSCrossRefGoogle Scholar
  79. 79.
    V.V. Kumar, P. Raghunathan, Proton NMR studies of the interaction of water with lecithin in non-polar organic media. Chem. Phys. Lipids 41, 159–171 (1986)CrossRefGoogle Scholar
  80. 80.
    D.M. Willard, R.E. Riter, N.E. Levinger, Dynamics of polar solvation in lecithin/water/cyclohexane reverse micelles. J. Am. Chem. Soc. 120, 4151–4160 (1998)CrossRefGoogle Scholar
  81. 81.
    G. Onori, A. Santucci, IR investigations of water structure in Aerosol OT reverse micellar aggregates. J. Phys. Chem. 97, 5430–5434 (1993)CrossRefGoogle Scholar
  82. 82.
    H. Caldararu, A. Caragheorgheopol, M. Vasilescu, I. Dragutan, H. Lemmetyinen, Structure of the polar core in reverse micelles of nonionic poly(oxyethylene) surfactants, as studied by spin probe and fluorescence probe techniques. J. Phys. Chem. 98, 5320–5331 (1994)CrossRefGoogle Scholar
  83. 83.
    D. Pant, N.E. Levinger, Polar solvation dynamics in nonionic reverse micelles and model polymer solutions. Langmuir 16, 10123–10130 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Max-Born-InstitutBerlinGermany

Personalised recommendations