• René CostardEmail author
Part of the Springer Theses book series (Springer Theses)


Cells are the machines of life for all living organisms from the smallest bacteria to large animals or plants Alberts et al., Molecular Biology of the Cell, [1]. Semipermeable cell membranes separate the cytoplasm from the extracellular space. Their basic structure consists of a bilayer of lipids (cf. Fig. 1.1) complemented by membrane proteins that account for selective transport of ions and molecules in and out of the cell as well as for cell signaling.


Head Group Hydrocarbon Chain Reverse Micelle Hydration Shell Hydration Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 5th edn. (Garland Science, Taylor and Francis Group, Boca Raton, 2008)Google Scholar
  2. 2.
  3. 3.
    L. Pauling, The Nature of the Chemical Bond and the Structure of Molecules and Crystals, 3rd edn. (Cornell University Press, New York, 1960)Google Scholar
  4. 4.
    G.C. Pimentel, A.L. McClellan, The Hydrogen Bond (W. H. Freeman & Company, San Francisco, 1960)Google Scholar
  5. 5.
    J. Milhaud, New insights into water-phospholipid model membrane interactions. Biochim. Biophys. Acta Biomembr. 1663, 19–51 (2004)CrossRefGoogle Scholar
  6. 6.
    M.L. Berkowitz, D.L. Bostick, S. Pandit, Aqueous solutions next to phospholipid membrane surfaces: insights from simulations. Chem. Rev. 106, 1527–1539 (2006)CrossRefGoogle Scholar
  7. 7.
    M. Chaplin, Do we underestimate the importance of water in cell biology? Nat. Rev. Mol. Cell Biol. 7, 861–866 (2006)CrossRefGoogle Scholar
  8. 8.
    P. Ball, Water as an active constituent in cell biology. Chem. Rev. 108, 74–108 (2008)CrossRefGoogle Scholar
  9. 9.
    A. Nicholls, K.A. Sharp, B. Honig, Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins: Struct. Funct. Bioinform. 11, 281–296 (1991)CrossRefGoogle Scholar
  10. 10.
    M.S. Cheung, A.E. Garcia, J.N. Onuchic, Protein folding mediated by solvation: water expulsion and formation of the hydrophobic core occur after the structural collapse. Proc. Natl. Acad. Sci. USA 99, 685–690 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    W. Saenger, W.N. Hunter, O. Kennard, DNA conformation is determined by economics in the hydration of phosphate groups. Nature 324, 385–388 (1986)ADSCrossRefGoogle Scholar
  12. 12.
    M. Falk, K.A. Hartman, R.C. Lord, Hydration of deoxyribonucleic acid. I. A gravimetric study. J. Am. Chem. Soc. 84, 3843–3846 (1962)CrossRefGoogle Scholar
  13. 13.
    M. Falk, K.A. Hartman, R.C. Lord, Hydration of deoxyribonucleic acid. II. An infrared study. J. Am. Chem. Soc. 85, 387–391 (1963)CrossRefGoogle Scholar
  14. 14.
    The 2013 Nobel Prize in Physiology or Medicine—Press Release, Nobel Media AB (2013).
  15. 15.
    A.H. Zewail. Femtochemistry: Atomic-scale Dynamics of the Chemical Bond Using Ultrafast Lasers. Nobel Lecture (1999)Google Scholar
  16. 16.
    T. Elsaesser, H.J. Bakker (eds.), Ultrafast Hydrogen Bonding Dynamics and Proton Transfer Processes in the Condensed Phase (Springer, New York, 2002)Google Scholar
  17. 17.
    M.D. Fayer (ed.), Ultrafast Infrared Vibrational Spectroscopy (Routledge Chapman & Hall, New York, 2013)Google Scholar
  18. 18.
    A. Laubereau, W. Kaiser, Picosecond spectroscopy of molecular dynamics in liquids. Annu. Rev. Phys. Chem. 26, 83–99 (1975)ADSCrossRefGoogle Scholar
  19. 19.
    T. Elsaesser, W. Kaiser, Vibrational and vibronic relaxation of large polyatomic molecules in liquids. Annu. Rev. Phys. Chem. 42, 83–107 (1991)ADSCrossRefGoogle Scholar
  20. 20.
    J.C. Owrutsky, D. Raftery, R.M. Hochstrasser, Vibrational relaxation dynamics in solutions. Annu. Rev. Phys. Chem. 45, 519–555 (1994)ADSCrossRefGoogle Scholar
  21. 21.
    E.T.J. Nibbering, T. Elsaesser, Ultrafast vibrational dynamics of hydrogen bonds in the condensed phase. Chem. Rev. 104, 1887–1914 (2004)CrossRefGoogle Scholar
  22. 22.
    H.J. Bakker, J.L. Skinner, Vibrational spectroscopy as a probe of structure and dynamics in liquid water. Chem. Rev. 110, 1498–1517 (2010)CrossRefGoogle Scholar
  23. 23.
    M.D. Fayer, N.E. Levinger, Analysis of water in confined geometries and at interfaces. Annu. Rev. Anal. Chem. 3, 89–107 (2010)CrossRefGoogle Scholar
  24. 24.
    A. Ghosh, R.M. Hochstrasser, A peptide’s perspective of water dynamics. Chem. Phys. 390, 1–13 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    M. Sundaralingam, Discussion paper: Molecular structures and conformations of the phospholipids and sphingomyelins. Ann. N. Y. Acad. Sci. 195, 324–355 (1972)ADSCrossRefGoogle Scholar
  26. 26.
    H. Hauser, I. Pascher, R.H. Pearson, S. Sundell, Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine. Biochim. Biophys. Acta Rev. Biomembr. 650, 21–51 (1981)CrossRefGoogle Scholar
  27. 27.
    R.H. Pearson, I. Pascher, The molecular structure of lecithin dihydrate. Nature 281, 499–501 (1979)ADSCrossRefGoogle Scholar
  28. 28.
    M.C. Wiener, S.H. White, Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure. Biophys. J. 61, 434–447 (1992)ADSCrossRefGoogle Scholar
  29. 29.
    K. Gawrisch, D. Ruston, J. Zimmerberg, V.A. Parsegian, R.P. Rand, N. Fuller, Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys. J. 61, 1213–1223 (1992)CrossRefGoogle Scholar
  30. 30.
    S. Tristram-Nagle, H.I. Petrache, J.F. Nagle, Structure and interactions of fully hydrated dioleoylphosphatidylcholine bilayers. Biophys. J. 75, 917–925 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    D.L. Worcester, N.P. Franks, Structural analysis of hydrated egg lecithin and cholesterol bilayers II. Neutron diffraction. J. Mol. Biol. 100, 359–378 (1976)CrossRefGoogle Scholar
  32. 32.
    G. Büldt, H.U. Gally, A. Seelig, J. Seelig, Neutron-diffraction studies on selectively deuterated phospholipid bilayers. Nature 271, 182–184 (1978)ADSCrossRefGoogle Scholar
  33. 33.
    S. König, E. Sackmann, D. Richter, R. Zorn, C. Carlile, T.M. Bayerl, Molecular dynamics of water in oriented DPPC multilayers studied by quasielastic neutron scattering and deuterium-nuclear magnetic resonance relaxation. J. Chem. Phys. 100, 3307–3316 (1994)ADSCrossRefGoogle Scholar
  34. 34.
    K. Gawrisch, H.C. Gaede, M. Mihailescu, S.H. White, Hydration of POPC bilayers studied by 1H-PFG-MAS-NOESY and neutron diffraction. Eur. Biophys. J. 36, 281–291 (2007)CrossRefGoogle Scholar
  35. 35.
    F. Foglia, M.J. Lawrence, C.D. Lorenz, S.E. McLain, On the hydration of the phosphocholine headgroup in aqueous solution. J. Chem. Phys. 133, 145103 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    P.L. Yeagle, W.C. Hutton, C.-H. Huang, R.B. Martin, Phospholipid headgroup conformations; intermolecular interactions and cholesterol effects. Biochemistry 16, 4344–4349 (1977)CrossRefGoogle Scholar
  37. 37.
    J. Seelig, \(^{31}\)P nuclear magnetic resonance and the head group structure of phospholipids in membranes. Biochim. Biophys. Acta Rev. Biomembr. 515, 105–140 (1978)CrossRefGoogle Scholar
  38. 38.
    P.T.T. Wong, H.H. Mantsch, High-pressure infrared spectroscopic evidence of water binding sites in 1,2-diacyl phospholipids. Chem. Phys. Lipids 46, 213–224 (1988)CrossRefGoogle Scholar
  39. 39.
    X. Chen, W. Hua, Z. Huang, H.C. Allen, Interfacial water structure associated with phospholipid membranes studied by phase-sensitive vibrational sum frequency generation spectroscopy. J. Am. Chem. Soc. 132, 11336–11342 (2010)CrossRefGoogle Scholar
  40. 40.
    S.J. Singer, G.L. Nicolson, The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972)ADSCrossRefGoogle Scholar
  41. 41.
    A.-L. Kuo, C.G. Wade, Lipid lateral diffusion by pulsed nuclear magnetic resonance. Biochemistry 18, 2300–2308 (1979)CrossRefGoogle Scholar
  42. 42.
    W.L.C. Vaz, R.M. Clegg, D. Hallmann, Translational diffusion of lipids in liquid crystalline phase phosphatidylcholine multibilayers. A comparison of experiment with theory. Biochemistry 24, 781–786 (1985)CrossRefGoogle Scholar
  43. 43.
    W. Pfeiffer, T. Henkel, E. Sackmann, W. Knoll, D. Richter, Local dynamics of lipid bilayers studied by incoherent quasi-elastic neutron scattering. Europhys. Lett. 8, 201–206 (1989)ADSCrossRefGoogle Scholar
  44. 44.
    M. Seigneuret, P.F. Devaux, ATP-dependent asymmetric distribution of spinlabeled phospholipids in the erythrocyte membrane: relation to shape changes. Proc. Natl. Acad. Sci. USA 81, 3751–3755 (1984)ADSCrossRefGoogle Scholar
  45. 45.
    A. Seelig, J. Seelig, Dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. Biochemistry 13, 4839–4845 (1974)CrossRefGoogle Scholar
  46. 46.
    F. Borle, J. Seelig, Hydration of Escherichia coli lipids: Deuterium T1 relaxation time studies of phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine. Biochim. Biophys. Acta Biomembr. 735, 131–136 (1983)CrossRefGoogle Scholar
  47. 47.
    R.M. Venable, Y. Zhang, B.J. Hardy, R.W. Pastor, Molecular dynamics simulations of a lipid bilayer and of hexadecane: an investigation of membrane fluidity. Science 262, 223–226 (1993)ADSCrossRefGoogle Scholar
  48. 48.
    H.E. Alper, D. Bassolino-Klimas, T.R. Stouch, The limiting behavior of water hydrating a phospholipid monolayer: a computer simulation study. J. Chem. Phys. 99, 5547–5559 (1993)ADSCrossRefGoogle Scholar
  49. 49.
    K. Tu, D.J. Tobias, M.L. Klein, Constant pressure and temperature molecular dynamics simulation of a fully hydrated liquid crystal phase dipalmitoylphosphatidylcholine bilayer. Biophys. J. 69, 2558–2562 (1995)ADSCrossRefGoogle Scholar
  50. 50.
    M. Pasenkiewicz-Gierula, Y. Takaoka, H. Miyagawa, K. Kitamura, A. Kusumi, Hydrogen bonding of water to phosphatidylcholine in the membrane as studied by a molecular dynamics simulation: Location, geometry, and lipid-lipid bridging via hydrogen-bonded water. J. Phys. Chem. A 101, 3677–3691 (1997)CrossRefGoogle Scholar
  51. 51.
    M. Pasenkiewicz-Gierula, Y. Takaoka, H. Miyagawa, K. Kitamura, A. Kusumi, Charge pairing of headgroups in phosphatidylcholine membranes: a molecular dynamics simulation study. Biophys. J. 76, 1228–1240 (1999)CrossRefGoogle Scholar
  52. 52.
    W. Shinoda, M. Shimizu, S. Okazaki, Molecular dynamics study on electrostatic properties of a lipid bilayer: polarization, electrostatic potential, and the effects on structure and dynamics of water near the interface. J. Phys. Chem. B 102, 6647–6654 (1998)CrossRefGoogle Scholar
  53. 53.
    L. Saiz, M.L. Klein, Structural properties of a highly polyunsaturated lipid bilayer from molecular dynamics simulations. Biophys. J. 81, 204–216 (2001)ADSCrossRefGoogle Scholar
  54. 54.
    L. Saiz, M.L. Klein, Electrostatic interactions in a neutral model phospholipid bilayer by molecular dynamics simulations. J. Chem. Phys. 116, 3052–3057 (2002)ADSCrossRefGoogle Scholar
  55. 55.
    S.Y. Bhide, M.L. Berkowitz, Structure and dynamics of water at the interface with phospholipid bilayers. J. Chem. Phys. 123, 224702 (2005)ADSCrossRefGoogle Scholar
  56. 56.
    W.M. Gelbart, A. Ben-Shaul, D. Roux (eds.), Micelles, Membranes, Microemulsions, and Monolayers (Springer, New York, 1994)Google Scholar
  57. 57.
    J.C. Shelley, M.Y. Shelley, R.C. Reeder, S. Bandyopadhyay, M.L. Klein, A coarse grain model for phospholipid simulations. J. Phys. Chem. B 105, 4464–4470 (2001)CrossRefGoogle Scholar
  58. 58.
    P. Walde, A.M. Giuliani, C.A. Boicelli, P.L. Luisi, Phospholipid-based reverse micelles. Chem. Phys. Lipids 53, 265–288 (1990)CrossRefGoogle Scholar
  59. 59.
    P.R. Cullis, M.J. Hope, C.P.S. Tilcock, Lipid polymorphism and the roles of lipids in membranes. Chem. Phys. Lipids 40, 127–144 (1986)CrossRefGoogle Scholar
  60. 60.
    B. de Kruijff, P.R. Cullis, A.J. Verkleij, Non-bilayer lipid structures in model and biological membranes. Trends Biochem. Sci. 5, 79–81 (1980)CrossRefGoogle Scholar
  61. 61.
    P.L. Luisi, M. Giomini, M.P. Pileni, B.H. Robinson, Reverse micelles as hosts for proteins and small molecules. Biochim. Biophys. Acta Rev. Biomembr. 947, 209–246 (1988)CrossRefGoogle Scholar
  62. 62.
    M.P. Pileni, Reverse micelles as microreactors. J. Phys. Chem. 97, 6961–6973 (1993)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Max-Born-InstitutBerlinGermany

Personalised recommendations