Coding of Group Odor in the Subcaudal Gland Secretion of the European Badger Meles meles: Chemical Composition and Pouch Microbiota

  • Christina D. BueschingEmail author
  • H. Veronica Tinnesand
  • YungWa Sin
  • Frank Rosell
  • Terry Burke
  • David W. Macdonald
Conference paper


The fermentation hypothesis predicts that odor profiles of mammals depend partly on the primary gland products excreted by the animal and partly on the composition of the bacterial flora converting these into secondary metabolites. Some mammalian odors, such as shared group odors, however, need to be consistent yet flexible (e.g., to allow for changes in social-group affiliation), and are thus predisposed for microbial mediation. Using terminal restriction fragment (TRF) length polymorphism analyses we analyzed the microbial community in subcaudal-gland secretions of European badgers (Meles meles) in relation to the chemical scent profiles as determined by gas chromatography-mass spectrometry analyses (GCMS) of 66 adults belonging to six different social groups. We found a total of 50 TRFs and 125 different chemical compounds with a subset of four TRFs best explaining the structure in the chemical matrix. Nevertheless, although semiochemical profiles were group specific, microbial profiles were not. In our approach, however, the number of operational taxonomic units exceeded the numbers of TRFs, and thus our analyses were likely limited by the afforded resolution. As it is likely that the variation in metabolic activity is found at the species-, subspecies-, or even strain-level, future high-throughput sequencing can be expected to reveal more subtle differences in the microbial communities between social groups.


Terminal Restriction Fragment Length Polymorphism Scent Mark Scent Profile Terminal Restriction Fragment Length Polymorphism Profile Group Odor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albone E (1984) Mammalian semiochemistry: the investigation of chemical signals between vertebrates. Wiley, ChichesterGoogle Scholar
  2. Albone ES, Perry GC (1975) Anal sac secretion of the red fox, Vulpes vulpes; volatile fatty acids and diamines: implications for a fermentation hypothesis of chemical recognition. J Chem Ecol 2:101–111CrossRefGoogle Scholar
  3. Albone ES, Eglinton G, Walker JM, Ware GC (1974) The anal sac secretion of red fox (Vulpes vulpes); its chemistry and microbiology. A comparison with the anal sac secretion of the lion (Panthera leo). Life Sci 14:387–400CrossRefPubMedGoogle Scholar
  4. Albone ES, Gosden PE, Ware GC, Macdonald DW, Hough NG (1978) Bacterial action and chemical signalling in the red fox (Vulpes vulpes) and other mammals. In: Bullard RW (ed) Flavour chemistry of animal foods, vol 67, ACS Symposium Series. American Chemical Society, Washington, DC, pp 78–91CrossRefGoogle Scholar
  5. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46Google Scholar
  6. Anderson MJ, Robinson J (2003) Generalized discriminant analyses based on distances. Aust N Zeal J Stat 45:301–318CrossRefGoogle Scholar
  7. Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84:511–525CrossRefGoogle Scholar
  8. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, PlymouthGoogle Scholar
  9. Annavi G, Newman C, Dugdale HL, Buesching CD, Sin YW, Burke T, Macdonald DW (2014) Neighbouring‐group composition and within‐group relatedness drive extra‐group paternity rate in the European badger (Meles meles). J Evol Biol 27:2191–2203PubMedCentralCrossRefPubMedGoogle Scholar
  10. Archie EA, Theis KR (2011) Animal behaviour meets microbial ecology. Anim Behav 82:425–436CrossRefGoogle Scholar
  11. Bodin C, Benhamou S, Poulle ML (2006) What do European badgers (Meles meles) know about the spatial organisation of neighbouring groups? Behav Processes 72:84–90CrossRefPubMedGoogle Scholar
  12. Brown RE, Macdonald DW (eds) (1985) Social odours in mammals, vol Volume I and Volume II. Clarendon, OxfordGoogle Scholar
  13. Buesching CD, Macdonald DW (2001) Scent-marking behaviour of the European badger (Meles meles): resource defence or individual advertisement. In: Marchlewska-Koj A, Lepri JL, Müller-Schwarze D (eds) Chemical signals in vertebrates 9. Kluwer Academic, New York, pp 321–327CrossRefGoogle Scholar
  14. Buesching CD, Macdonald DW (2004) Variations in object-marking activity and over-marking behaviour of European badgers (Meles meles) in the vicinity of their setts. Acta Theriol 49:235–246CrossRefGoogle Scholar
  15. Buesching CD, Waterhouse JP, Macdonald DW (2002a) Gas chromatographic analysis of the subcaudal gland secretion of the European badger (Meles meles) Part I: Chemical differences related to individual-specific parameters. J Chem Ecol 28:41–56CrossRefPubMedGoogle Scholar
  16. Buesching CD, Waterhouse JP, Macdonald DW (2002b) Gas chromatographic analysis of the subcaudal gland secretion of the European badger (Meles meles) Part II: Time-related variation in the individual-specific composition. J Chem Ecol 28:57–69CrossRefPubMedGoogle Scholar
  17. Buesching CD, Newman C, Macdonald DW (2002c) Variations in colour and volume of the subcaudal gland secretion of badgers (Meles meles) in relation to sex, season and individual-specific parameters. Z Säugetierk 67:1–10Google Scholar
  18. Buesching CD, Stopka P, Macdonald DW (2003) The social function of allo-marking behaviour in the European badger (Meles meles). Behaviour 140:965–980CrossRefGoogle Scholar
  19. Buyers JA (1985) Olfaction related behaviour in peccaries. Z Tierpsychol 70:201–210Google Scholar
  20. Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  21. Clarke KR, Warwick RM (2001) Change in marine communities, 2nd edn. PRIMER-E, PlymouthGoogle Scholar
  22. Clarke KR, Somerfield PJ, Gorley RN (2008) Testing of null hypotheses in exploratory community analyses: similarity profiles and biota-environment linkage. J Exp Mar Biol Ecol 366:56–69CrossRefGoogle Scholar
  23. Delahay RJ, Brown JA, Mallinson PJ, Spyvee PD, Handoll D, Rogers LM, Cheeseman CL (2000) The use of marked bait in studies of the territorial organization of the European badger (Meles meles). Mam Rev 30:73–87CrossRefGoogle Scholar
  24. Dugdale HL, Macdonald DW, Pope LC, Burke T (2007) Polygynandry, extra-group paternity and multiple-paternity litters in European badger (Meles meles) social groups. Mol Ecol 16:5294–5306CrossRefPubMedGoogle Scholar
  25. Ezenwa VO, Williams AE (2014) Microbes and animal olfactory communication: Where do we go from here? Bioessays 36:847–854CrossRefPubMedGoogle Scholar
  26. Ferkin MH, Sorokin ES, Johnston RE, Lee CJ (1997) Attractiveness of scents varies with protein content of the diet in meadow voles. Anim Behav 53:133–141CrossRefGoogle Scholar
  27. Gangestad SW, Thornhill R (1998) Menstrual cycle variation in women's preferences for the scent of symmetrical men. Proc Roy Soc B 265:927–933CrossRefGoogle Scholar
  28. Goodwin TE, Broederdorf LJ, Burkert BA, Hirwa IH, Mark DB, Waldrip ZJ, Kopper RA, Sutherland MV, Freeman EW, Hollister-Smith JA, Schulte BA (2012) Chemical signals of elephant musth: temporal aspects of microbially-mediated modifications. J Chem Ecol 38:81–87CrossRefPubMedGoogle Scholar
  29. Gorman ML (1976) A mechanism for individual recognition by odour in Herpestes auropunctatus (Carnivora: Viverridae). Anim Behav 24:141–145CrossRefGoogle Scholar
  30. Gorman ML, Kruuk H, Leitch A (1984) Social functions of the sub-caudal scent gland secretion of the European badger (Meles meles) (Carnivora: Mustelidae). J Zool Lond 203:549–559CrossRefGoogle Scholar
  31. Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analyses. Biometrika 53:325–338CrossRefGoogle Scholar
  32. Gower DB, Nixon A, Jackman PJH, Mallett AI (1986) Transformation of steroids by axillary coryneform bacteria. Int J Cosmet Sci 8:149–158CrossRefPubMedGoogle Scholar
  33. Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162CrossRefGoogle Scholar
  34. Hurst JL, Fang J, Barnard CJ (1993) The role of substrate odours in maintaining social tolerance between male house mice, Mus musculus domesticus. Anim Behav 45:997–1006CrossRefGoogle Scholar
  35. James AG, Austin CJ, Cox DS, Taylor D, Calvert R (2013) Microbiological and biochemical origins of human axillary odour. FEMS Microbiol Ecol 83:527–540CrossRefPubMedGoogle Scholar
  36. Johnson DD, Macdonald DW, Dickman AJ (2000) An analysis and review of models of the sociobiology of the Mustelidae. Mamm Rev 30:171–196CrossRefGoogle Scholar
  37. Kelliher KR (2007) The combined role of the main olfactory and vomeronasal systems in social communication in mammals. Horm Behav 52:561–570PubMedCentralCrossRefPubMedGoogle Scholar
  38. Kohl JV, Atzmueller M, Fink B, Grammer K (2001) Human pheromones: Integrating neuroendocrinology and ethology. Neuro Endocrinol Lett 22:309–321PubMedGoogle Scholar
  39. Kruuk H (1989) The social badger: ecology and behaviour of a group-living carnivore (Meles meles). Oxford University Press, OxfordGoogle Scholar
  40. Leclaire S, Nielsen JF, Drea CM (2014) Bacterial communities in meerkat anal scent secretions vary with host sex, age, and group membership. Behav Ecol 25:996–1004CrossRefGoogle Scholar
  41. Macdonald DW (1985) The carnivores: order Carnivora. In: Brown M, Macdonald DW (eds) Social odours in mammals, vol 2. Clarendon, Oxford, pp 619–722Google Scholar
  42. Macdonald DW, Newman C (2002) Badger (Meles meles) population dynamics in Oxfordshire, UK, Numbers, Density and Cohort life histories, and a possible role of climate change in population growth. J Zool 256:121–138CrossRefGoogle Scholar
  43. Macdonald DW, Newman C, Buesching CD, Johnson PJ (2008) Male-biased movement in a high-density population of the Eurasian badger (Meles meles). J Mammal 89:1077–1086CrossRefGoogle Scholar
  44. Macdonald DW, Newman C, Nouvellet PM, Buesching CD (2009) An analysis of Eurasian badger (Meles meles) population dynamics: Implications for regulatory mechanisms. J Mammal 90:1392–1403CrossRefGoogle Scholar
  45. Mardon J, Saunders SM, Anderson MJ, Cochoux C, Bonadonna F (2010) Species, gender, and identity: cracking petrels’ sociochemical code. Chem Senses 35:309–321CrossRefPubMedGoogle Scholar
  46. McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297CrossRefGoogle Scholar
  47. Müller-Schwarze D (2006) Chemical ecology of vertebrates. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  48. Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59: 695–700Muyzer G, Teske A, Wirsen CO, Jannasch HW (1995) Phylogenetic relationships ofThiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arc Microbiol 164: 165–172Nakagawa S (2004) A farewell to Bonferroni: the problems of low statistical power and publication bias. Behav Ecol 15:1044–1045Google Scholar
  49. Natynczuk SE, Macdonald DW (1994) Scent, sex, and the self-calibrating rat. J Chem Ecol 20:1843–1857CrossRefPubMedGoogle Scholar
  50. Noonan MJ, Markham A, Newman C, Trigoni N, Buesching CD, Ellwood SA, Macdonald DW (2014) Climate and the individual: inter-annual variation in the autumnal activity of the European badger (Meles meles). PLoS One 9, e83156PubMedCentralCrossRefPubMedGoogle Scholar
  51. Osada K, Yamazaki K, Curran M, Bard J, Smith BP, Beauchamp GK (2003) The scent of age. Proc Roy Soc Lond 270:929–933CrossRefGoogle Scholar
  52. Őstborn H (1976) Doftmarkering hos graveling. Zool Revy 38:103–112Google Scholar
  53. Palphramand KL, White PC (2007) Badgers, Meles meles, discriminate between neighbour, alien and self scent. Anim Behav 74:429–436CrossRefGoogle Scholar
  54. Penn DJ (2002) The scent of genetic compatibility: sexual selection and the major histocompatibility complex. Ethology 108:1–21CrossRefGoogle Scholar
  55. Roper TJ (2010) Badger. Collins, LondonGoogle Scholar
  56. Sin YW, Buesching CD, Burke T, Macdonald DW (2012) Molecular characterization of the microbial communities in the subcaudal gland secretion of the European badger (Meles meles). FEMS Microbiol Ecol 81:648–659CrossRefPubMedGoogle Scholar
  57. Smith CJ, Danilowicz BS, Clear AK, Costello FJ, Wilson B, Meijer WG (2005) T-Align, a web-based tool for comparison of multiple terminal restriction fragment length polymorphism profiles. FEMS Microbiol Ecol 54:375–380CrossRefPubMedGoogle Scholar
  58. Stübbe M (1971) Die analen Markierungsorgane des Dachses (Meles meles). Zool Garten NF 40:125–135Google Scholar
  59. Theis KR, Schmidt TM, Holekamp KE (2012) Evidence for a bacterial mechanism for group-specific social odors among hyenas. Sci Rep 2:615PubMedCentralCrossRefPubMedGoogle Scholar
  60. Theis KR, Venkataraman A, Dycus JA, Koonter KD, Schmitt-Matzen EN, Wagner AP, Holekamp KE, Schmidt TM (2013) Symbiotic bacteria appear to mediate hyena social odors. Proc Natl Acad Sci U S A 110:19832–19837PubMedCentralCrossRefPubMedGoogle Scholar
  61. Thornton PD, Newman C, Johnson PJ, Buesching CD, Baker SE, Slater D, Johnson DDP, Macdonald DW (2005) Preliminary comparison of four anaesthetic regimes in badgers (Meles meles). Vet Anaesth Analg 32:40–47CrossRefPubMedGoogle Scholar
  62. Todrank J, Heth G, Johnston RE (1998) Kin recognition in golden hamsters: evidence for kinship odours. Anim Behav 55:377–386CrossRefPubMedGoogle Scholar
  63. Woodley SK, Baum MJ (2003) Effects of sex hormones and gender on attraction thresholds for volatile anal scent gland odors in ferrets. Horm Behav 44:110–118CrossRefPubMedGoogle Scholar
  64. Wyatt TD (2010) Pheromones and signature mixtures: defining species-wide signals and variable cues for identity in both invertebrates and vertebrates. J Comp Physiol 196:685–700CrossRefGoogle Scholar
  65. Zechman JM, Martin IG, Wellington JL, Beauchamp GK (1984) Perineal scent gland of wild and domestic cavies: bacterial activity and urine as sources of biologically significant odors. Physiol Behav 32:269–274CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Christina D. Buesching
    • 1
    Email author
  • H. Veronica Tinnesand
    • 2
  • YungWa Sin
    • 1
    • 3
  • Frank Rosell
    • 2
  • Terry Burke
    • 3
  • David W. Macdonald
    • 1
  1. 1.Recanati-Kaplan Centre, Wildlife Conservation Research Unit, Department of ZoologyUniversity of OxfordTubneyUK
  2. 2.Faculty of Arts and Sciences, Department of Environmental and Health StudiesTelemark University CollegeBø, TelemarkNorway
  3. 3.NERC Biomolecular Analysis Facility – Sheffield, Department of Animal & Plant SciencesUniversity of SheffieldSheffieldUK

Personalised recommendations