Skip to main content

Linear and Nonlinear Analysis of Fetal Heart Rate Variability

  • Chapter
Fetal Development

Abstract

Cardiotocography (CTG) is widely used in pregnant women for fetal monitoring and has provided extensive knowledge on the pathophysiology of fetal hypoxia. Computer analyses of CTG tracings were developed to reduce intraobserver and interobserver disagreement inherent to visual analyses, but commonly rely on the use of simple linear time-domain indices, providing a limited understanding of fetal heart rate (FHR) variability. Additional information can be obtained from linear analysis of FHR in the frequency-domain and from nonlinear methods such as measures of entropy. Such indices are able to characterize fetal behavioral states, different gestational ages, and to identify situations of fetal acidemia. However, the technical specifications of fetal monitoring equipment and fetal presentation should be considered in order to ensure an adequate application of these indices. In addition to these, the inclusion of fetal gender may improve the identification of fetal acidemia and intrauterine growth-restriction. In conclusion, linear and nonlinear analysis of FHR variability is likely to improve the performance of existing computer systems for CTG analysis, justifying more extensive clinical trials with these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • ACOG, American College of Obstetricians and Gynecologists. (2005). ACOG practice bulletin. Clinical management guidelines for obstetrician-gynecologists. Obstetrics & Gynecology, 106, 1453–1460.

    Article  Google Scholar 

  • Almeida, R., Gonçalves, H., Bernardes, J., & Rocha, A. P. (2014). Fetal QRS detection and heart rate estimation: A wavelet-based approach. Physiological Measurement, 35, 1723–1735.

    Article  PubMed  Google Scholar 

  • Amorim-Costa, C., Gonçalves, H., Bernardes, J., & Ayres-de-Campos, D. (2012). Spectral and entropy analysis of fetal heart rate throughout gestation: A prospective cohort study. International Journal of Gynecology & Obstetrics, 119(Suppl3), S735.

    Article  Google Scholar 

  • Ayres-de-Campos, D., Bernardes, J., & Costa-Pereira, A. (1999). Inconsistencies in classification by experts of cardiotocograms and subsequent clinical decision. BJOG: An International Journal of Obstetrics & Gynaecology, 106, 1307–1310.

    Article  Google Scholar 

  • Ayres-de-Campos, D., Sousa, P., Costa, A., & Bernardes, J. (2008). Omniview-SisPorto 3.5—A central fetal monitoring station with online alerts based on computerized cardiotocogram + ST event analysis. Journal of Perinatal Medicine, 36, 260–264.

    Article  PubMed  Google Scholar 

  • Bernardes, J., Gonçalves, H., Ayres-de-Campos, D., & Rocha, A. P. (2008). Linear and complex heart rate dynamics vary with sex in relation to fetal behavioural states. Early Human Development, 84, 433–439.

    Article  PubMed  Google Scholar 

  • Bernardes, J., Gonçalves, H., Ayres-de-Campos, D., & Rocha, A. P. (2009). Sex differences in linear and complex fetal heart rate dynamics of normal and acidemic fetuses in the minutes preceding delivery. Journal of Perinatal Medicine, 37, 168–176.

    Article  PubMed  Google Scholar 

  • Chung, D. Y., Sim, Y. B., Park, K. T., Yi, S. H., Shin, J. C., & Kim, S. P. (2001). Spectral analysis of fetal heart rate variability as a predictor of intrapartum fetal distress. International Journal of Gynecology & Obstetrics, 73, 109–116.

    Article  Google Scholar 

  • Clifford, G. D., Silva, I., Behar, J., & Moody, G. B. (2014). Noninvasive fetal ECG analysis. Physiological Measurement, 35, 1521–1536.

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa, M., Goldberger, A. L., & Peng, C. K. (2002). Multiscale entropy analysis of complex physiologic time series. Physical Review Letters, 89, 068102.

    Article  PubMed  Google Scholar 

  • Costa, M., Goldberger, A. L., & Peng, C. K. (2005). Multiscale entropy analysis of biological signals. Physical Review E, 71, 021906.

    Article  Google Scholar 

  • FIGO, International Federation of Gynecology and Obstetrics. (1995). Intrapartum surveillance: Recommendations on current practice and overview of new developments. FIGO study group on the assessment of new technology international federation of gynecology and obstetrics. International Journal of Gynecology & Obstetrics, 49, 213–221.

    Article  Google Scholar 

  • Fong, B. F., Savelsbergh, G. J. P., Leijsen, M. R., & de Vries, J. I. P. (2009). The influence of prenatal breech presentation on neonatal leg posture. Early Human Development, 85, 201–206.

    Article  PubMed  Google Scholar 

  • Gonçalves, H., Ayres-de-Campos, D., & Bernardes, J. (2014). Fetal behavioral dynamics in cephalic versus breech presentations. Developmental Psychobiology, 56, 1595–1600.

    Article  PubMed  Google Scholar 

  • Gonçalves, H., Bernardes, J., & Ayres-de-Campos, D. (2013). Gender-specific heart rate dynamics in severe intrauterine growth-restricted fetuses. Early Human Development, 89, 431–437.

    Article  PubMed  Google Scholar 

  • Gonçalves, H., Bernardes, J., Rocha, A. P., & Ayres-de-Campos, D. (2007). Linear and nonlinear analysis of heart rate patterns associated to fetal behavioral states in the antepartum period. Early Human Development, 83, 585–591.

    Article  PubMed  Google Scholar 

  • Gonçalves, H., Costa, A., Ayres-de-Campos, D., Costa-Santos, C., Rocha, A. P., & Bernardes, J. (2013). Comparison of real beat-to-beat signals with commercially available 4 Hz sampling on the evaluation of fetal heart rate variability. Medical & Biological Engineering & Computing, 51, 665–676.

    Article  Google Scholar 

  • Gonçalves, H., Rocha, A. P., Ayres-de-Campos, D., & Bernardes, J. (2006a). Internal versus external intrapartum fetal heart rate monitoring: Effect on linear and nonlinear parameters. Physiological Measurement, 27, 307–319.

    Article  PubMed  Google Scholar 

  • Gonçalves, H., Rocha, A. P., Ayres-de-Campos, D., & Bernardes, J. (2006b). Linear and nonlinear fetal heart rate analysis of normal and acidemic fetuses in the minutes preceding delivery. Medical & Biological Engineering & Computing, 44, 847–855.

    Article  Google Scholar 

  • Henriques, T., Gonçalves, H., Antunes, L., Matias, M., Bernardes, J., & Costa-Santos, C. (2013). Entropy and compression: Two measures of complexity. Journal of Evaluation in Clinical Practice, 19, 1101–1106.

    Article  PubMed  Google Scholar 

  • Hoyer, D., Tetschke, F., Jaekel, S., Nowack, S., Witte, O. W., Schleuβner, E., & Schneider, U. (2013). Fetal functional brain age assessed from universal developmental indices obtained from neuro-vegetative activity patterns. PLoS One, 8, e74431.

    Google Scholar 

  • Kean, L. H., Suwanrath, C., Gargari, S. S., Sahota, D. S., & James, D. K. (1999). A comparison of fetal behaviour in breech and cephalic presentations at term. British Journal of Obstetrics & Gynaecology, 106, 1209–1213.

    Article  Google Scholar 

  • Lange, S., Van Leeuwen, P., Geue, D., Hatzmann, W., & Grönemeyer, D. (2005). Influence of gestational age, heart rate, gender and time of day on fetal heart rate variability. Medical & Biological Engineering & Computing, 43, 481–486.

    Article  Google Scholar 

  • Martínez, J. P., Almeida, R., Olmos, S., Rocha, A. P., & Laguna, P. (2004). Wavelet-based ECG delineator: Evaluation on standard databases. IEEE Transactions on Biomedical Engineering, 51, 570–581.

    Article  PubMed  Google Scholar 

  • Nijhuis, I., & ten Hof, J. (1999). Development of fetal heart rate and behavior: Indirect measures to assess the fetal nervous system. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 87, 1–2.

    Article  PubMed  Google Scholar 

  • Nunes, I., Ayres-de-Campos, D., Figueiredo, C., & Bernardes, J. (2013). An overview of central fetal monitoring systems in labour. Journal of Perinatal Medicine, 41, 93–99.

    Article  PubMed  Google Scholar 

  • Oppenheimer, L. W., & Lewinsky, R. M. (1994). Power spectral analysis of fetal heart rate. Baillière’s Clinical Obstetrics and Gynaecology, 8, 643–661.

    Article  PubMed  Google Scholar 

  • Park, Y. S., Ryu, K. Y., Shim, S. S., Hoh, J. K., & Park, M. I. (2012). Comparison of fetal heart rate patterns using nonlinear dynamics in breech versus cephalic presentation at term. Early Human Development, 89, 101–106.

    Article  PubMed  Google Scholar 

  • Pincus, S., & Viscarello, R. (1992). Approximate entropy: A regularity measure for fetal heart rate analysis. Obstetrics & Gynecology, 79, 249–255.

    Google Scholar 

  • Pinto, P., Bernardes, J., Costa-Santos, C., Amorim-Costa, C., Silva, M., & Ayres-de-Campos, D. (2014). Development and evaluation of an algorithm for computer analysis of maternal heart rate during labour. Computers in Biology and Medicine, 49, 30–35.

    Article  PubMed  Google Scholar 

  • RCOG, Royal College of Obstetricians and Gynaecologists. (2001). Evidence-based clinical guideline number 8. The use of electronic fetal monitoring. London: Royal College of Obstetricians and Gynaecologists.

    Google Scholar 

  • Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology – Heart and Circulatory Physiology, 278, H2039–H2049.

    PubMed  Google Scholar 

  • Rooth, G., Huch, A., & Huch, R. (1987). FIGO news. Guidelines for the use of fetal monitoring. International Journal of Gynecology & Obstetrics, 25, 159–167.

    Article  Google Scholar 

  • Salamalekis, E., Thomopoulos, P., Giannaris, D., Salloum, I., Vasios, G., Prentza, A., & Koutsouris, D. (2002). Computerised intrapartum diagnosis of fetal hypoxia based on fetal heart rate monitoring and fetal pulse oximetry recordings utilising wavelet analysis and neural networks. BJOG: An International Journal of Obstetrics & Gynaecology, 109, 1137–1142.

    Google Scholar 

  • Signorini, M. G., Magenes, G., Cerrutti, S., & Arduini, D. (2003). Linear and nonlinear parameters for the analysis of fetal heart rate signal from cardiotacographic recordings. IEEE Transactions on Biomedical Engineering, 50, 365–374.

    Article  PubMed  Google Scholar 

  • Silva, I., Behar, J., Sameni, R., Zhu, T., Oster, J., Clifford, G. D., & Moody, G. B. (2013). Noninvasive fetal ECG: The PhysioNet/computing in cardiology challenge 2013. Computing in Cardiology, 40, 149–152.

    Google Scholar 

  • Sørensen, H. T., Steffensen, F. H., Olsen, J., Sabroe, S., Gillman, M. W., Fischer, P., & Rothman, K. J. (1999). Long-term follow-up of cognitive outcome after breech presentation at birth. Epidemiology, 10, 554–556.

    Google Scholar 

  • Swartjes, J. M., van Geijn, H. P., Mantel, R., van Woerden, E. E., & Schoemaker, H. C. (1990). Coincidence of behavioural state parameters in the human fetus at three gestational ages. Early Human Development, 23, 75–83.

    Article  PubMed  Google Scholar 

  • Task Force, Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Task Force Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation, 93, 1043–1065.

    Article  Google Scholar 

  • Tendais, I., Figueiredo, B., Gonçalves, H., Bernardes, J., Ayres-de-Campos, D., & Montenegro, N. (2014). Sex differences in the fetal heart rate variability indices of twins. Journal of Perinatal Medicine, 43, 221–225.

    Google Scholar 

  • Van der Meulen, J. A., Davies, G. A., & Kisilevsky, B. S. (2008). Fetal sensory-elicited body movements differ in breech compared to cephalic position. Developmental Psychobiology, 50, 530–534.

    Article  PubMed  Google Scholar 

  • Van Leeuwen, P., Lange, S., Betterman, H., Grönemeyer, D., & Hatzmann, W. (1999). Fetal heart variability and complexity in the course of pregnancy. Early Human Development, 54, 259–269.

    Article  PubMed  Google Scholar 

  • Vindla, S., & James, D. (1995). Fetal behaviour as a test of fetal well-being. British Journal of Obstetrics and Gynaecology, 102, 597–600.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernâni Gonçalves PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gonçalves, H., Ayres-de-Campos, D., Bernardes, J. (2016). Linear and Nonlinear Analysis of Fetal Heart Rate Variability. In: Reissland, N., Kisilevsky, B. (eds) Fetal Development. Springer, Cham. https://doi.org/10.1007/978-3-319-22023-9_7

Download citation

Publish with us

Policies and ethics