Skip to main content

Yoke Motor Learning in the Fetal Rat: A Model System for Prenatal Behavioral Development

  • Chapter
Fetal Development

Abstract

A great deal has been learned about fetal sensory experience and associative learning over the past four decades, but far less is known about how experience may contribute to the prenatal development of the motor system. Indeed, the earliest rudiments of behavior consist of seemingly random spontaneous movements, and experimental demonstrations that spontaneous activity can be generated by isolated elements of the spinal cord have promoted the misconception that experience plays little or no role in early motor development. Building upon an animal model that permits direct assessment of behavior in the rat fetus, my laboratory has developed a motor learning paradigm to study how kinesthetic feedback from motor performance can lead to adaptive changes in motor coordination. Fetal limb movement is manipulated with an interlimb yoke, which creates a physical linkage between two limbs. The yoke results in a gradual increase in conjugate limb movements during a 30-min training session. After yoke training, rat fetuses continue to show enhanced coordination of the trained limbs, which is evident in both the timing and spatial organization of limb movements. Moreover, savings in the rate of acquisition also is evident when fetuses experience yoke training in a second session. These findings argue that fetuses are not automatons but rather are responsive to kinesthetic feedback and can alter the frequency, patterning, and coordination of movement in response to sensory challenges and biomechanical perturbations of the motor system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Aziz Y. I., & Karara, H. M. (1971). Direct linear transformation from comparator coordinates into object space coordinates in close-range photogrammetry. ASP Symposium on Close Range Photogrammetry (pp. 1–19). Falls Church, VA: American Society of Photogrammetry.

    Google Scholar 

  • Alberts, J. R., & Ronca, A. E. (1993). Fetal experience revealed by rats: Psychobiological insights. Early Human Development, 35, 153–166.

    Article  PubMed  Google Scholar 

  • Angulo y Gonzalez, A. W. (1932). The prenatal development of behavior in the albino rat. Journal of Comparative Neurology, 55, 395–442.

    Article  Google Scholar 

  • Angulo-Kinzler, R. M. (2001). Exploration and selection of intralimb coordination patterns in 3-month-old infants. Journal of Motor Behavior, 33, 363–376.

    Article  PubMed  Google Scholar 

  • Angulo-Kinzler, R. M., & Horn, C. L. (2001). Selection and memory of a lower limb motor-perceptual task in 3-month-old infants. Infant Behavior & Development, 24, 239–257.

    Article  Google Scholar 

  • Avery, G. T. (1928). Responses of foetal guinea pigs prematurely delivered. Genetic Psychology Monographs, 3, 245–331.

    Google Scholar 

  • Barcroft, J., & Barron, D. H. (1939). The development of behavior in foetal sheep. Journal of Comparative Neurology, 70, 477–502.

    Article  Google Scholar 

  • Barcroft, J., Barron, D. H., & Windle, W. F. (1936). Some observations on genesis of somatic movements in sheep embryos. Journal of Physiology, 87, 73–78.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bekoff, A. (1992). Neuroethological approaches to the study of motor development in chicks: Achievements and challenges. Journal of Neurobiology, 23, 1486–1505.

    Article  PubMed  Google Scholar 

  • Bekoff, A., & Lau, B. (1980). Interlimb coordination in 20-day-old rat fetuses. Journal of Experimental Zoology, 214, 173–175.

    Article  PubMed  Google Scholar 

  • Blumberg-Feldman, H., & Eilam, D. (1995). Postnatal development of synchronous stepping in the gerbil (Gerbillus dasyurus). Journal of Experimental Biology, 198, 363–372.

    PubMed  Google Scholar 

  • Bradley, N. S. (1997). Reduction in buoyancy alters parameters of motility in E9 chick embryos. Physiology & Behavior, 62, 591–595.

    Article  Google Scholar 

  • Bradley, N. S., & Bekoff, A. (1990). Development of coordinated movement in chicks: I. Temporal analysis of hindlimb muscle synergies at embryonic days 9 and 10. Developmental Psychobiology, 23, 763–782.

    Article  PubMed  Google Scholar 

  • Bradley, N. S., & Sebelski, C. (2000). Ankle restraint modifies motility at E12 in chick embryos. Journal of Neurophysiology, 83, 431–440.

    PubMed  Google Scholar 

  • Bradley, N. S., Solanki, D., & Zhao, D. (2005). Limb movements during embryonic development in the chick: Evidence for a continuum in limb motor control antecedent to locomotion. Journal of Neurophysiology, 94, 4401–4411.

    Article  PubMed  Google Scholar 

  • Brumley, M. R., & Robinson, S. R. (2005). The serotonergic agonists quipazine, CGS-12066A and α-methylserotonin alter motor activity and induce hindlimb stepping in the intact and spinal rat fetus. Behavioral Neuroscience, 119, 821–833.

    Article  PubMed  Google Scholar 

  • Brumley, M. R., & Robinson, S. R. (2010). Experience in the perinatal development of action systems. In M. S. Blumberg, J. H. Freeman Jr., & S. R. Robinson (Eds.), Oxford handbook of developmental behavioral neuroscience (pp. 181–209). New York, NY: Oxford University Press.

    Google Scholar 

  • Brumley, M. R., & Robinson, S. R. (2013). Sensory feedback alters spontaneous limb movements in newborn rats: Effects of unilateral forelimb weighting. Developmental Psychobiology, 55, 323–333.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carmichael, L. (1926). The development of behavior in vertebrates experimentally removed from the influence of external stimulation. Psychological Review, 33, 51–58.

    Article  Google Scholar 

  • Carmichael, L. (1934). An experimental study in the prenatal guinea-pig of the origin and development of reflexes and patterns of behavior in relation to the stimulation of specific receptor areas during the period of active fetal life. Genetic Psychology Monographs, 16, 338–491.

    Google Scholar 

  • Chambers, S. H., Bradley, N. S., & Orosz, M. D. (1995). Kinematic analysis of wing and leg movements for type I motility in E9 chick embryos. Experimental Brain Research, 103, 218–226.

    Article  PubMed  Google Scholar 

  • Chen, Y.-P., Fetters, L., Holt, K. G., & Saltzman, E. (2002). Making the mobile move: Constraining task and environment. Infant Behavior & Development, 25, 195–220.

    Article  Google Scholar 

  • Clarac, F., Brocard, F., & Vinay, L. (2004). The maturation of locomotor networks. Progress in Brain Research, 143, 57–66.

    Article  PubMed  Google Scholar 

  • Coronios, J. D. (1933). Development of behavior in the fetal cat. Genetic Psychology Monographs, 14, 283–386.

    Google Scholar 

  • Drachman, D. B., & Sokoloff, L. (1966). The role of movement in embryonic joint development. Developmental Biology, 14, 401–420.

    Article  Google Scholar 

  • Drewett, R. F., Statham, C., & Wakerley, J. B. (1974). A quantitative analysis of the feeding behaviour of suckling rats. Animal Behaviour, 22, 907–913.

    Article  PubMed  Google Scholar 

  • Eilam, D. (1997). Postnatal development of body architecture and gait in several rodent species. Journal of Experimental Biology, 200, 1339–1350.

    PubMed  Google Scholar 

  • Eilam, D., & Shefer, G. (1997). The developmental order of bipedal locomotion in the jerboa (Jaculus orientalis): Pivoting, creeping, quadrupedalism, and bipedalism. Developmental Psychobiology, 31, 137–142.

    Article  PubMed  Google Scholar 

  • Fayein, N. A., & Viala, D. (1976). Development of locomotor activities in young chronic spinal rabbits. Neuroscience Letters, 3, 329–333.

    Article  PubMed  Google Scholar 

  • Fifer, W. P., & Moon, C. M. (1995). The effects of fetal experience with sound. In J.-P. Lecanuet, W. P. Fifer, N. A. Krasnegor, & W. P. Smotherman (Eds.), Fetal development: A psychobiological perspective (pp. 351–366). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Fitzgerald, M. (1987). Spontaneous and evoked activity of primary afferents in vivo. Nature, 326, 603–605.

    Article  PubMed  Google Scholar 

  • Gottlieb, G. (1997). Synthesizing nature-nurture: Prenatal roots of instinctive behavior. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Graham Brown, T. (1915). On the activities of the central nervous system of the un-born fœtus of the cat; with a discussion of the question whether progression (walking, etc.) is a “learnt” complex. Journal of Physiology, 49, 208–215.

    Article  Google Scholar 

  • Hall, W. G., & Rosenblatt, J. S. (1977). Suckling behavior and intake control in the developing rat pup. Journal of Comparative and Physiological Psychology, 91, 1232–1247.

    Article  Google Scholar 

  • Hamburger, V., Wenger, E., & Oppenheim, R. W. (1966). Motility in the chick embryo in the absence of sensory input. Journal of Experimental Zoology, 162, 133–160.

    Article  Google Scholar 

  • Haverkamp, L. J. (1986). Anatomical and physiological development of the Xenopus embryonic motor system in the absence of neural activity. Journal of Neuroscience, 6, 1338–1348.

    PubMed  Google Scholar 

  • Haverkamp, L. J., & Oppenheim, R. W. (1986). Behavioral development in the absence of neural activity: Effects of chronic immobilization on amphibian embryos. Journal of Neuroscience, 6, 1332–1337.

    PubMed  Google Scholar 

  • Jamon, M. (2014). The development of vestibular system and related functions in mammals: Impact of gravity. Frontiers in Integrative Neuroscience, 8, 11.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirby, M. L. (1979). Effects of morphine on spontaneous activity of 18-day rat fetus. Developmental Neuroscience, 2, 238–244.

    Article  PubMed  Google Scholar 

  • Kisilevsky, B. S., Hains, S. M. J., Lee, K., Xie, X., Huang, H., Ye, H. H., et al. (2003). Effects of experience on fetal voice recognition. Psychological Science, 14, 220–224.

    Article  PubMed  Google Scholar 

  • Kleven, G. A., Lane, M. S., & Robinson, S. R. (2004). Development of interlimb movement synchrony in the rat fetus. Behavioral Neuroscience, 118, 835–844.

    Article  PubMed  Google Scholar 

  • Kraebel, K. S., Fable, J., & Gerhardstein, P. (2004). New methodology in infant operant kicking procedures: Computerized stimulus control and computerized measurement of kicking. Infant Behavior and Development, 27, 1–18.

    Article  Google Scholar 

  • Kucera, J., Walro, J. M., & Reichler, J. (1989). Role of nerve and muscle factors in the development of rat muscle spindles. American Journal of Anatomy, 186, 144–160.

    Article  PubMed  Google Scholar 

  • Kudo, N., Nishimaru, H., & Nakayama, K. (2004). Developmental changes in rhythmic spinal neuronal activity in the rat fetus. Progress in Brain Research, 143, 49–55.

    PubMed  Google Scholar 

  • Kuo, Z.-Y. (1967). The dynamics of behavior development. New York, NY: Random House.

    Google Scholar 

  • Lackey, J. A. (1967). Growth and development of Dipodomys stephensi. Journal of Mammalogy, 48, 624–632.

    Article  PubMed  Google Scholar 

  • Lickliter, R. (1995). Embryonic sensory experience and intersensory development in precocial birds. In J.-P. Lecanuet, W. P. Fifer, N. A. Krasnegor, & W. P. Smotherman (Eds.), Fetal Development: A Psychobiological Perspective (pp. 281–294). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Matthews, S. A., & Detwiler, S. R. (1926). The reaction of Amblystoma embryos following prolonged treatment with chloretone. Journal of Experimental Zoology, 45, 279–292.

    Article  Google Scholar 

  • Mennella, J. A., Jagnow, C. P., & Beauchamp, G. K. (2001). Prenatal and postnatal flavor learning by human infants. Pediatrics, 107, Article no. e88.

    Article  PubMed  Google Scholar 

  • Milburn, A. (1973). Early development of muscle spindles in the rat. Journal of Cell Science, 12, 175–195.

    PubMed  Google Scholar 

  • Moessinger, A. C. (1983). Fetal akinesia deformation sequence: An animal model. Pediatrics, 72, 857–863.

    PubMed  Google Scholar 

  • Moore, C. L., & Chadwick‐Dias, A. M. (1986). Behavioral responses of infant rats to maternal licking: Variations with age and sex. Developmental Psychobiology, 19, 427–438.

    Article  PubMed  Google Scholar 

  • Muller, G. B. (2003). Embryonic motility: Environmental influences and evolutionary innovation. Evolution & Development, 5, 56–60.

    Article  Google Scholar 

  • Narayanan, C. H., Fox, M. W., & Hamburger, V. (1971). Prenatal development of spontaneous and evoked activity in the rat (Rattus norvegicus). Behaviour, 40, 100–134.

    Article  PubMed  Google Scholar 

  • Narayanan, C. H., & Hamburger, V. (1971). Motility in chick embryos with substitution of lumbosacral by brachial and brachial by lumbosacral spinal cord segments. Journal of Experimental Zoology, 178, 415–432.

    Article  PubMed  Google Scholar 

  • Narayanan, C. H., & Malloy, R. B. (1974). Deafferentation studies on motor activity in the chick. II. Activity pattern of wings. Journal of Experimental Zoology, 189, 177–188.

    Article  PubMed  Google Scholar 

  • Narayanan, C. H., Narayanan, Y., & Browne, R. C. (1982). Effects of induced thyroid deficiency on the development of suckling behavior in rats. Physiology & Behavior, 29, 361–370.

    Article  Google Scholar 

  • Oppenheim, R. W. (1972). An experimental investigation of the possible role of tactile and proprioceptive stimulation in certain aspects of embryonic behavior in the chick. Developmental Psychobiology, 5, 71–91.

    Article  PubMed  Google Scholar 

  • Ozaki, S., Yamada, T., Iizuka, M., Nishimaru, H., & Kudo, N. (1996). Development of locomotor activity induced by NMDA receptor activation in the lumbar spinal cord of the rat fetus studied in vitro. Developmental Brain Research, 97, 118–125.

    Article  PubMed  Google Scholar 

  • Pankratz, D. S. (1931). A preliminary report on the fetal movements in the rabbit. Anatomical Record, 48, 58–59.

    Google Scholar 

  • Provine, R. R. (1972). Ontogeny of bioelectric activity in the spinal cord of the chick embryo and its behavioral implications. Brain Research, 41, 365–378.

    Article  PubMed  Google Scholar 

  • Robinson, S. R. (1989). A comparative study of prenatal behavioral ontogeny in altricial and precocial murid rodents. Unpublished doctoral dissertation, Zoology, Oregon State University, Corvallis.

    Google Scholar 

  • Robinson, S. R. (2005). Conjugate limb coordination after experience with an interlimb yoke: Evidence for motor learning in the rat fetus. Developmental Psychobiology, 47, 328–344.

    Article  PubMed  Google Scholar 

  • Robinson, S. R. (2015). Spinal mediation of motor learning and memory in the rat fetus. Developmental Psychobiology, 57(4), 421–434.

    Article  PubMed  Google Scholar 

  • Robinson, S. R., Blumberg, M. S., Lane, M. S., & Kreber, L. A. (2000). Spontaneous motor activity in fetal and infant rats is organized into discrete multilimb bouts. Behavioral Neuroscience, 114, 328–336.

    Article  PubMed  Google Scholar 

  • Robinson, S. R., & Brumley, M. R. (2005). Prenatal behavior. In I. Q. Whishaw & B. Kolb (Eds.), The behaviour of the laboratory rat: A handbook with tests (pp. 257–265). New York, NY: Oxford University Press.

    Google Scholar 

  • Robinson, S. R., Hoeltzel, T. C. M., Cooke, K. M., Umphress, S. M., Murrish, D. E., & Smotherman, W. P. (1992). Oral capture and grasping of an artificial nipple by rat fetuses. Developmental Psychobiology, 25, 543–555.

    Article  PubMed  Google Scholar 

  • Robinson, S. R., & Kleven, G. A. (2005). Learning to move before birth. In B. Hopkins & S. P. Johnson (Eds.), Prenatal development of postnatal functions. (Advances in infancy research series, pp. 131–175). Westport, CT: Praeger Publishers.

    Google Scholar 

  • Robinson, S. R., Kleven, G. A., & Brumley, M. R. (2008). Prenatal development of interlimb motor learning in the rat fetus. Infancy, 13, 204–228.

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson, S. R., & Méndez-Gallardo, V. (2010). Amniotic fluid as an extended milieu interieur. In K. E. Hood, C. T. Halpern, G. Greenberg, & R. M. Lerner (Eds.), The handbook of developmental science, behavior, and genetics (pp. 234–284). Malden, MA: Wiley Blackwell.

    Chapter  Google Scholar 

  • Robinson, S. R., & Smotherman, W. P. (1987). Environmental determinants of behavior in the rat fetus. II. The emergence of synchronous movement. Animal Behaviour, 35, 1652–1662.

    Article  Google Scholar 

  • Robinson, S. R., & Smotherman, W. P. (1991). The amniotic sac as scaffolding: Prenatal ontogeny of an action pattern. Developmental Psychobiology, 24, 463–485.

    Article  PubMed  Google Scholar 

  • Robinson, S. R., & Smotherman, W. P. (1992a). Fundamental motor patterns of the mammalian fetus. Journal of Neurobiology, 23, 1574–1600.

    Article  PubMed  Google Scholar 

  • Robinson, S. R., & Smotherman, W. P. (1992b). Organization of the stretch response to milk in the rat fetus. Developmental Psychobiology, 25, 33–49.

    Article  PubMed  Google Scholar 

  • Robinson, S. R., & Smotherman, W. P. (1992c). Behavioral response of altricial and precocial rodent fetuses to acute umbilical cord compression. Behavioral and Neural Biology, 57, 93–102.

    Article  PubMed  Google Scholar 

  • Robinson, S. R., & Smotherman, W. P. (1992d). The emergence of behavioral regulation during fetal development. In G. Turkewitz (Ed.), Developmental psychobiology. Annals of the New York Academy of Sciences, 662, 53–83.

    Article  PubMed  Google Scholar 

  • Robinson, S. R., & Smotherman, W. P. (1994). Behavioral effects of milk in the rat fetus. Behavioral Neuroscience, 108, 1139–1149.

    Article  PubMed  Google Scholar 

  • Robinson, S. R., & Smotherman, W. P. (1995). Habituation and classical conditioning in the rat fetus: Opioid involvements. In J.-P. Lecanuet, N. A. Krasnegor, W. P. Fifer, & W. P. Smotherman (Eds.), Fetal development: A psychobiological perspective (pp. 295–314). Hillsdale, NJ: Lawrence Erlbaum & Associates.

    Google Scholar 

  • Robinson, S. R., Woller, S. A., Khetarpal, N., Fromm, D., & Brumley, M. R. (2004). 24-Hour retention of interlimb yoke training in the neonatal rat: Evidence for motor memory. Program No. 946.3. 2004 Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience.

    Google Scholar 

  • Ronca, A. E., & Alberts, J. R. (1994). Sensory stimuli associated with gestation and parturition evoke cardiac and behavioral responses in fetal rats. Psychobiology, 22, 270–282.

    Google Scholar 

  • Ronca, A. E., & Alberts, J. R. (1995). Maternal contributions to fetal experience and the transition from prenatal to postnatal life. In J.-P. Lecanuet, W. P. Fifer, N. A. Krasnegor, & W. P. Smotherman (Eds.), Fetal development: A psychobiological perspective (pp. 331–350). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.

    Google Scholar 

  • Ronca, A. E., & Alberts, J. R. (2000). Effects of prenatal spaceflight on vestibular responses in neonatal rats. Journal of Applied Physiology, 89, 2318–2324.

    PubMed  Google Scholar 

  • Ronca, A., Fritzsch, B., Bruce, L. L., & Alberts, J. R. (2008). Orbital spaceflight during pregnancy shapes function of mammalian vestibular system. Behavioral Neuroscience, 122, 224–232.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ronca, A. E., Kamm, K., Thelen, E., & Alberts, J. R. (1994). Proximal control of fetal rat behavior. Developmental Psychobiology, 27, 23–38.

    Article  PubMed  Google Scholar 

  • Ronca, A. E., Lamkin, C. A., & Alberts, J. R. (1993). Maternal contributions to sensory experience in the fetal and newborn rat (Rattus norvegicus). Journal of Comparative Psychology, 107, 61–74.

    Article  PubMed  Google Scholar 

  • Rovee, C. K., & Rovee, D. T. (1969). Conjugate reinforcement of infant exploratory behavior. Journal of Experimental Child Psychology, 8, 33–39.

    Article  PubMed  Google Scholar 

  • Rovee-Collier, C., Hayne, H., & Colombo, M. (2001). The development of implicit and explicit memory. Amsterdam: John Benjamins Publishing Co.

    Google Scholar 

  • Rovee-Collier, C. K., Morrongiello, B. A., Aron, M., & Kupersmidt, J. (1978). Topographical response differentiation and reversal in 3-month-old infants. Infant Behavior and Development, 1, 323–333.

    Article  Google Scholar 

  • Schaal, B. (2005). From amnion to colostrum to milk: Odor bridging in early developmental transitions. In B. Hopkins & S. P. Johnson (Eds.), Prenatal development of postnatal functions (Advances in infancy research series, pp. 51–102). Westport, CT: Praeger Publishers.

    Google Scholar 

  • Scholz, J. P., & Millford, J. P. (1993). Accuracy and precision of the PEAK performance technologies motion measurement system. Journal of Motor Behavior, 25, 2–7.

    Article  PubMed  Google Scholar 

  • Sharp, A. A., & Bekoff, A. (2015). Pyridoxine treatment alters embryonic motility in chicks: Implications for the role of proprioception. Developmental Psychobiology. doi:10.1002/dev.21282.

    PubMed Central  Google Scholar 

  • Smotherman, W. P., Richards, L. S., & Robinson, S. R. (1984). Techniques for observing fetal behavior in utero: A comparison of chemomyelotomy and spinal transection. Developmental Psychobiology, 17, 661–674.

    Article  PubMed  Google Scholar 

  • Smotherman, W. P., & Robinson, S. R. (1986). Environmental determinants of behaviour in the rat fetus. Animal Behaviour, 34, 1859–1873.

    Article  Google Scholar 

  • Smotherman, W. P., & Robinson, S. R. (1987). Prenatal expression of species-typical action patterns in the rat fetus (Rattus norvegicus). Journal of Comparative Psychology, 101, 190–196.

    Article  PubMed  Google Scholar 

  • Smotherman, W. P., & Robinson, S. R. (1988a). The uterus as environment: The ecology of fetal experience. In E. M. Blass (Ed.), Handbook of behavioral neurobiology (Developmental psychobiology and behavioral ecology, Vol. 9, pp. 149–196). New York, NY: Plenum.

    Google Scholar 

  • Smotherman, W. P., & Robinson, S. R. (1988b). Fetal expression of the leg extension response to anogenital stimulation. Physiology & Behavior, 43, 243–244.

    Article  Google Scholar 

  • Smotherman, W. P., & Robinson, S. R. (1988c). Behavior of rat fetuses following chemical or tactile stimulation. Behavioral Neuroscience, 102, 24–34.

    Article  PubMed  Google Scholar 

  • Smotherman, W. P., & Robinson, S. R. (1989). Cryptopsychobiology: The appearance, disappearance and reappearance of a species-typical action pattern during early development. Behavioral Neuroscience, 103, 246–253.

    Article  PubMed  Google Scholar 

  • Smotherman, W. P., & Robinson, S. R. (1991). Accessibility of the rat fetus for psychobiological investigation. In H. Shair, G. A. Barr, & M. A. Hofer (Eds.), Developmental psychobiology: New methods and changing concepts (pp. 148–166). New York, NY: Oxford University Press.

    Google Scholar 

  • Smotherman, W. P., & Robinson, S. R. (1992a). Kappa opioid mediation of fetal responses to milk. Behavioral Neuroscience, 106, 396–407.

    Article  PubMed  Google Scholar 

  • Smotherman, W. P., & Robinson, S. R. (1992b). Opioid control of the fetal stretch response: Implications for the first suckling episode. Behavioral Neuroscience, 106, 866–873.

    Article  PubMed  Google Scholar 

  • Smotherman, W. P., & Robinson, S. R. (1998). Prenatal ontogeny of sensory responsiveness and learning. In G. Greenberg & M. Haraway (Eds.), Comparative psychology: A handbook (pp. 586–601). New York, NY: Garland.

    Google Scholar 

  • Swenson, E. A. (1926). The development of movement of the albino rat before birth. Unpublished doctoral dissertation, Anatomy, University of Kansas, Lawrence, KS.

    Google Scholar 

  • Thelen, E. (1994). Three-month-old infants can learn task-specific patterns of interlimb coordination. Psychological Science, 5, 280–285.

    Article  Google Scholar 

  • Thelen, E., Skala, K. D., & Kelso, J. A. (1987). The dynamic nature of early coordination: Evidence from bilateral leg movements in young infants. Developmental Psychology, 23, 179–186.

    Article  Google Scholar 

  • Tilney, F., & Kubie, L. S. (1931). Behavior in its relation to the development of the brain. Bulletin of the Neurological Institute of New York, 1, 213–226.

    Google Scholar 

  • Ulrich, B., Ulrich, D., Angulo-Kinzler, R., & Chapman, D. (1997). Sensitivity of infants with and without down syndrome to intrinsic dynamics. Research Quarterly for Exercise and Sport, 68, 10–19.

    Article  PubMed  Google Scholar 

  • Vaal, J., van Soest, A. J. K., & Hopkins, B. (2000). Spontaneous kicking behavior in infants: Age-related effects of unilateral weighting. Developmental Psychobiology, 36, 111–122.

    Article  PubMed  Google Scholar 

  • Viala, D., Viala, G., & Fayein, N. (1986). Plasticity of locomotor organization in infant rabbits spinalized shortly after birth. In M. E. Goldberger, A. Gorio, & A. Murray (Eds.), Development and plasticity of the mammalian spinal cord (pp. 301–310). New York, NY: Springer.

    Google Scholar 

  • Vinay, L., Pearlstein, E., & Clarac, F. (2010). Development of spinal cord locomotor networks controlling limb movements. In M. S. Blumberg, J. H. Freeman, & S. R. Robinson (Eds.), Oxford handbook of developmental behavioral neuroscience (pp. 210–239). New York, NY: Oxford University Press.

    Google Scholar 

  • Walton, K. D., Harding, S., Anschel, D., Harris, Y. T., & Llinás, R. (2005). The effects of microgravity on the development of surface righting in rats. Journal of Physiology, 565, 593–608.

    Article  PubMed  PubMed Central  Google Scholar 

  • Walton, K., Heffernan, C., Sulica, D., & Benavides, L. (2007). Changes in gravity influence rat postnatal motor system development: From simulation to space flight. Gravitational and Space Research, 10, 111–118.

    Google Scholar 

  • Watson, S. J., & Bekoff, A. (1990). A kinematic analysis of hindlimb motility in 9-day-old and 10-day-old chick embryos. Journal of Neurobiology, 21, 651–660.

    Article  PubMed  Google Scholar 

  • Windle, W. F., & Griffin, A. M. (1931). Observations on embryonic and fetal movements of the cat. Journal of Comparative Neurology, 52, 149–188.

    Article  Google Scholar 

  • Windle, W. F., Minear, W. L., Austin, M. F., & Orr, D. W. (1935). The origin and early development of somatic behavior in the albino rat. Physiological Zoology, 8, 156–185.

    Article  Google Scholar 

  • Windle, W. F., O'Donnell, J. E., & Glasshagle, E. E. (1933). The early development of spontaneous and reflex behavior in cat embryos and fetuses. Physiological Zoology, 6, 521–541.

    Article  Google Scholar 

Download references

Acknowledgments

Portions of this research were presented at annual meetings of the International Society for Developmental Psychobiology and Society for Neuroscience. I thank O. Bailey, M.R. Brumley, G.A. Kleven, and S.A. Woller for their assistance in conducting these fetal experiments. This research was supported by NIH grant HD 33862 to S.R.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott R. Robinson PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Robinson, S.R. (2016). Yoke Motor Learning in the Fetal Rat: A Model System for Prenatal Behavioral Development. In: Reissland, N., Kisilevsky, B. (eds) Fetal Development. Springer, Cham. https://doi.org/10.1007/978-3-319-22023-9_3

Download citation

Publish with us

Policies and ethics