Maternal Anxiety, Mindfulness, and Heart Rate Variability During Pregnancy Influence Fetal and Infant Development

Abstract

In this chapter, we present our recently conceptualized model on Developmental Origins of Behavior, Health, and Disease (DOBHaD) in which we incorporate the results of four of our studies as examples to demonstrate how each topic influenced the model; in addition, we provide a brief overview of relevant literature. The study of DOBHaD encompasses both, short- and long-term consequences of conditions in the environment relevant to behavior, health, and disease risk and addresses research issues related to the interface between developmental, behavioral, and medical science. In the first section, one early and one later study from the Leuven prospective follow-up project are described. Study 1 examines the influence of maternal emotions on fetal and neonatal behavioral state-related activity and on infant activity. Study 2 examines the relationship between fetal behavioral states and self-regulation in childhood and adolescence. In the second section, two recent studies from the Tilburg prospective follow-up project are described. Study 3 explores how variation in both negative emotions (i.e., maternal anxiety) and positive emotions (i.e., maternal mindfulness) influence infant neurocognitive development. Study 4 explores the issue of how exposure to a past, resolved maternal anxiety disorder influences maternal heart rate variability during pregnancy as well as infant heart rate variability, which in turn influences infant temperament. In the final section we summarize our results, use them to explain applications of the DOBHaD model, and speculate on potential clinical implications.

Keywords

Prenatal stress Maternal anxiety during pregnancy Maternal mindfulness during pregnancy Infant event related potentials (ERPs) Autonomic nervous system Infant temperament Fetal behavioral states Self-regulation Infant cognition Heart rate variability in pregnant women Infant heart rate variability 

Notes

Acknowledgements

I thank all parents and children of the Leuven and Tilburg cohorts for their participation in our studies and the many students who helped with the data collection. I am grateful to the (former) PhD students Drs. T. Billiet, Dr. H.R. Binderhagel, Dr.A. Bogaerts, Dr. M.A.K.A. Braeken, Dr. E.M. Loomans, Dr. K. Eggers, Dr. M.Mennes, Dr. R.A. Otte, Drs. M.I. van den Heuvel and to Dr. F. Donkers for their dedication to the longitudinal DOBHaD projects, their expertise and excellent collaboration. I thank all coauthors and collaborators for sharing their expertise and fruitful collaboration. These studies were realized with the financial support from of the Fund for Scientific Research (FWO, Flanders; grant agreement G.0211.3), the Katholieke Universiteit Leuven (KU Leuven IMPH/06/GHW and IDO 05/010 EEG-FMRI); Tilburg University–Babylab; the European Science Foundation—EruoSTRESS project, and EU Seventh Framework Programme (FP7, Health 20112.2.2-2, grant agreement No. 279281 BRAINAGE); we are grateful for this support.

References

  1. Ahadi, S. A., Rothbart, M. K., & Ye, R. (1993). Children’s temperament in the US and China: Similarities and differences. European Journal of Personality, 7(5), 359–378. doi:10.1002/per.2410070506.CrossRefGoogle Scholar
  2. Alder, J., Fink, N., Bitzer, J., Hösli, I., & Holzgreve, W. (2007). Depression and anxiety during pregnancy: A risk factor for obstetric, fetal and neonatal outcome? A critical review of the literature. Journal of Maternal-Fetal and Neonatal Medicine, 20(3), 189–209. doi:10.1080/14767050701209560.PubMedCrossRefGoogle Scholar
  3. Alho, K., Sainio, K., Sajaniemi, N., Reinikainen, K., & Näätänen, R. (1990). Event-related brain potential of human newborns to pitch change of an acoustic stimulus. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 77(2), 151–155. doi:http://dx.doi.org/10.1016/0168-5597(90)90031-8.CrossRefGoogle Scholar
  4. Arrindell, W., & Ettema, H. (1981). Dimensionele structuur, betrouwbaarheid en validiteit van de Nederlandse bewerking van de Symptom Checklist (SCL-90): Gegevens gebaseerd op een fobische en een “normale’ populatie. [Dimensional Structure, Reliability and Validity of the Dutch Version of the Symptom Checklist (SCL-90): Data based on a phobic and an “normal’ population.]. Nederlands Tijdschrift voor de Psychologie en haar Grensgebieden, 36(2), 77–108.Google Scholar
  5. Arrindell, W., & Ettema, J. (2003). Symptom checklist SCL-90: Handleiding bij een multidimensionele psychopathologie-indicator. [Symptom checklist. Manual of a multidimensional psychopathology-indicator]. Lisse: Swets Test.Google Scholar
  6. Bai, S., & Repetti, R. L. (2015). Short-term resilience processes in the family. Family Relations, 64(1), 108–119. doi:10.1111/fare.12101.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Barker, D. J. (1990). The fetal and infant origins of adult disease. BMJ: British Medical Journal, 301(6761), 1111.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Barker, D. (1995). The Wellcome Foundation Lecture, 1994. The fetal origins of adult disease. Proceedings of the Royal Society Series B: Biological Sciences, 262, 37–43. doi:10.1098/rspb.1995.0173.CrossRefGoogle Scholar
  9. Barker, D. J. P. (2004). The developmental origins of well–being. Philosophical Transactions of the Royal Society, B: Biological Sciences, 359(1449), 1359–1366. doi:10.1098/rstb.2004.1518.PubMedCentralCrossRefGoogle Scholar
  10. Barker, D. J. P., & Osmond, C. (1986). Infant mortality, childhood nutrition, and ischaemic heart disease and ischaemic heart disease in England and Wales. The Lancet, 327(8489), 1077–1081. doi:http://dx.doi.org/10.1016/S0140-6736(86)91340-1.CrossRefGoogle Scholar
  11. Bauer, A., Parsonage, M., Knapp, M., Iemmi, V., & Adelaja, B. (2014). Costs of perinatal mental health problems. London, UK: London School of Economics & Centre for Mental Health.Google Scholar
  12. Bayley, N. (2006). Bayley scales of infant and toddler development. San Antonio, TX: Harcourt Assessment.Google Scholar
  13. Belsky, J., & Pluess, M. (2009). Beyond diathesis-stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885–908. doi:http://dx.doi.org/10.1037/a0017376.PubMedCrossRefGoogle Scholar
  14. Beydoun, H., & Saftlas, A. F. (2008). Physical and mental health outcomes of prenatal maternal stress in human and animal studies: A review of recent evidence. Paediatric and Perinatal Epidemiology, 22(5), 438–466. doi:10.1111/j.1365-3016.2008.00951.x.PubMedCrossRefGoogle Scholar
  15. Blumberg, M. S., Freeman, J. H., & Robinson, S. R. (2010). Oxford handbook of developmental behavioral neuroscience. New York: Oxford University Press.Google Scholar
  16. Bock, J., Poeschel, J., Schindler, J., Börner, F., Shachar-Dadon, A., Ferdman, N., … Poeggel, G. (2014). Transgenerational sex-specific impact of preconception stress on the development of dendritic spines and dendritic length in the medial prefrontal cortex. Brain Structure and Function, 1–9. doi:10.1007/s00429-014-0940-4.Google Scholar
  17. Bock, J., Rether, K., Gröger, N., Xie, L., & Braun, K. (2014). Perinatal programming of emotional brain circuits: An integrative view from systems to molecules. Frontiers in Neuroscience, 8, 11. doi:10.3389/fnins.2014.00011.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary–developmental theory of origins and functions of stress reactivity. Developmental Psychopathology, 17, 271–301. doi:http://dx.doi.org/10.1017/S0954579405050145 DOI:10.1017/S0954579405050145#_blank.CrossRefGoogle Scholar
  19. Braeken, M. A. (2014). Psychological functioning and the autonomic nervous system during pregnancy. Impact on mother and child (PhD thesis). Tilburg University, Tilburg, the Netherlands.Google Scholar
  20. Braeken, M. A., Kemp, A. H., Outhred, T., Otte, R. A., Monsieur, G. J., Jones, A., & Van den Bergh, B. R. (2013). Pregnant mothers with resolved anxiety disorders and their offspring have reduced heart rate variability: Implications for the health of children. PLoS One, 8(12), e83186. doi:10.1371/journal.pone.0083186.Google Scholar
  21. Calkins, S. D., & Fox, N. A. (2002). Self-regulatory processes in early personality development: A multilevel approach to the study of childhood social withdrawal and aggression. Development and psychopathology, 14(03), 477–498. doi:http://dx.doi.org/10.1017/S095457940200305X.PubMedCrossRefGoogle Scholar
  22. Capaldi, D. M., & Rothbart, M. K. (1992). Development and validation of an early adolescent temperament measure. The Journal of Early Adolescence, 12(2), 153–173. doi:10.1177/0272431692012002002.CrossRefGoogle Scholar
  23. Carlson, D. B., & Labarba, R. C. (1979). Maternal emotionality during pregnancy and reproductive outcome: A review of the literature. International Journal of Behavioral Development, 2(4), 343–376. doi:10.1177/016502547900200402.CrossRefGoogle Scholar
  24. Casaer, P. (1979). Postural behaviour in newborn infants. London: William Heinemann Medical Books.Google Scholar
  25. Casaer, P. (1993). Old and new facts about perinatal brain development. Journal of Child Psychology and Psychiatry, 34(1), 101–109. doi:10.1111/j.1469-7610.1993.tb00969.x.PubMedCrossRefGoogle Scholar
  26. Casaer, P., & Devlieger, H. (1984). The behavioural state in human perinatal life. Journal of Developmental Physiology, 6(3), 187–194.PubMedGoogle Scholar
  27. Casaer, P., & Eggermont, E. (1985). Neonatal clinical neurological assessment. In S. Harel & N. J. Anastasiow (Eds.), The at-risk infant: Psycho/socio/medical aspects (pp. 197–220). Baltimore, MD: Brookes.Google Scholar
  28. Casaer, P., O’Brien, M. J., & Prechtl, H. F. (1973). Postural behaviour in human newborns. Agressologie: Revue internationale de physio-biologie et de pharmacologie appliquées aux effets de l’agression, 14 (Spec B), 49–57.Google Scholar
  29. Charil, A., Laplante, D. P., Vaillancourt, C., & King, S. (2010). Prenatal stress and brain development. Brain Research Reviews, 65(1), 56–79. doi:http://dx.doi.org/10.1016/j.brainresrev.2010.06.002.PubMedCrossRefGoogle Scholar
  30. Copher, D. E., & Huber, C. P. (1967). Heart rate response of the human fetus to induced maternal hypoxia. American Journal of Obstetrics and Gynecology, 98(3), 320–335.PubMedGoogle Scholar
  31. Crews, D., Gillette, R., Scarpino, S. V., Manikkam, M., Savenkova, M. I., & Skinner, M. K. (2012). Epigenetic transgenerational inheritance of altered stress responses. Proceedings of the National Academy of Sciences, 109(23), 9143–9148. doi:10.1073/pnas.1118514109.CrossRefGoogle Scholar
  32. Daskalakis, N. P., Bagot, R. C., Parker, K. J., Vinkers, C. H., & de Kloet, E. R. (2013). The three-hit concept of vulnerability and resilience: Toward understanding adaptation to early-life adversity outcome. Psychoneuroendocrinology, 38(9), 1858–1873. doi:http://dx.doi.org/10.1016/j.psyneuen.2013.06.008.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Daskalakis, N. P., & Yehuda, R. (2014). Site-specific methylation changes in the glucocorticoid receptor exon 1F promoter in relation to life adversity: Systematic review of contributing factors. Frontiers in Neuroscience, 8, 369. doi:10.3389/fnins.2014.00369.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Davids, A., & Holden, R. H. (1970). Consistency of maternal attitudes and personality from pregnancy to eight months following childbirth. Developmental Psychology, 2(3), 364–366. doi:http://dx.doi.org/10.1037/h0029192.CrossRefGoogle Scholar
  35. Davids, A., Holden, R. H., & Gray, G. B. (1963). Maternal anxiety during pregnancy and adequacy of mother and child adjustment eight months following childbirth. Child Development, 34(4), 993–1002. doi:10.2307/1126541.PubMedGoogle Scholar
  36. de Kloet, E. R., Claessens, S. E. F., & Kentrop, J. (2014). Context modulates outcome of perinatal glucocorticoid action in the brain. Frontiers in Endocrinology, 5, 100. doi:10.3389/fendo.2014.00100.PubMedPubMedCentralCrossRefGoogle Scholar
  37. de Kloet, E. R., Joels, M., & Holsboer, F. (2005). Stress and the brain: From adaptation to disease. Nature Reviews Neuroscience, 6(6), 463–475. doi:10.1038/nrn1683.PubMedCrossRefGoogle Scholar
  38. de Kloet, E. R., Karst, H., & Joëls, M. (2008). Corticosteroid hormones in the central stress response: Quick-and-slow. Frontiers in Neuroendocrinology, 29(2), 268–272. doi:10.1016/j.yfrne.2007.10.002.PubMedCrossRefGoogle Scholar
  39. de Vries, J. I. P., Visser, G. H. A., & Prechtl, H. F. R. (1982). The emergence of fetal behaviour. I. Qualitative aspects. Early Human Development, 7(4), 301–322. doi:http://dx.doi.org/10.1016/0378-3782(82)90033-0.PubMedCrossRefGoogle Scholar
  40. de Vries, J. I. P., Visser, G. H. A., & Prechtl, H. F. R. (1985). The emergence of fetal behaviour. II. Quantitative aspects. Early Human Development, 12(2), 99–120. doi:http://dx.doi.org/10.1016/0378-3782(85)90174-4.PubMedCrossRefGoogle Scholar
  41. Del Giudice, M. (2012). Fetal programming by maternal stress: Insights from a conflict perspective. Psychoneuroendocrinology, 37, 1641-1629. http://dx.doi.org/10.1016/j.psyneuen.2012.05.014
  42. Del Giudice, M., Ellis, B.J., Shirtcliff, E.A., 2011. The adaptive calibration model of stress responsivity. Neuroscience Biobehavioral Reviews, 35, 1562-1592.doi:10.1016/j.neubiorev.2010.11.007.
  43. Deprest, J. A., Van Ballaer, P. P., Evrard, V. A., Peers, K. H. E., Spitz, B., Steegers, E. A., & Vandenberghe, K. (1998). Experience with fetoscopic cord ligation. European Journal of Obstetrics & Gynecology and Reproductive Biology, 81(2), 157–164. doi:http://dx.doi.org/10.1016/S0301-2115(98)00181-X.Google Scholar
  44. Derryberry, D., & Rothbart, M. K. (1997). Reactive and effortful processes in the organization of temperament. Development and Psychopathology, 9(04), 633–652. doi:http://dx.doi.org/10.1017/S0954579497001375.PubMedCrossRefGoogle Scholar
  45. Dierckx, B., Tulen, J. H., van den Berg, M. P., Tharner, A., Jaddoe, V. W., Moll, H. A., … Tiemeier, H. (2009). Maternal psychopathology influences infant heart rate variability: Generation R study. Psychosomatic Medicine, 71(3), 313–321. doi:10.1097/PSY.0b013e318198a82c.Google Scholar
  46. DiPietro, J. A., Costigan, K. A., Pressman, E. K., & Doussard-Roosevelt, J. A. (2000). Antenatal origins of individual differences in heart rate. Developmental Psychobiology, 37(4), 221–228. doi:10.1002/1098-2302(2000)37:4<221::AID-DEV2>3.0.CO;2-A.PubMedCrossRefGoogle Scholar
  47. Dorner, G. (1974). Environment-dependent brain differentiation and fundamental processes of life. Acta Biologica et Medica Germanica, 33(2), 129–148.PubMedGoogle Scholar
  48. Ellis, L. K., & Rothbart, M. K. (2001). Revision of the early adolescent temperament questionnaire. Paper presented at the 2001 Biennial Meeting of the Society for Research in Child Development, Minneapolis, MN.Google Scholar
  49. Erickson, M. T. (1971). Risk factors associated with complications of pregnancy, labor, and delivery. American Journal of Obstetrics and Gynecology, 111, 658–662.PubMedGoogle Scholar
  50. Erickson, M. T. (1976a). The influence of health factors on psychological variables predicting complications of pregnancy, labor and delivery. Journal of Psychosomatic Research, 20(1), 21–24. doi:http://dx.doi.org/10.1016/0022-3999(76)90096-9.PubMedCrossRefGoogle Scholar
  51. Erickson, M. T. (1976b). The relationship between psychological variables and specific complications of pregnancy, labor, and delivery. Journal of Psychosomatic Research, 20(3), 207–210. doi:http://dx.doi.org/10.1016/0022-3999(76)90022-2.PubMedCrossRefGoogle Scholar
  52. Eskes, T. K. A. B. (1992). Introduction. In J. G. Nijhuis (Ed.), Fetal behaviour: Developmental and perinatal aspects (pp. XV–XXI). New York, NY: Oxford University Press.Google Scholar
  53. Farber, E. A., Vaughn, B., & Egeland, B. (1981). The relationship of prenatal maternal anxiety to infant behavior and mother-infant interaction during the first six months of life. Early Human Development, 5(3), 267–277. doi:http://dx.doi.org/10.1016/0378-3782(81)90034-7.PubMedCrossRefGoogle Scholar
  54. Ferreira, A. J. (1960). The pregnant woman’s emotional attitude and its reflection on the newborn. American Journal of Orthopsychiatry, 30(3), 553–561. doi:10.1111/j.1939-0025.1960.tb02070.x.PubMedCrossRefGoogle Scholar
  55. Ferreira, A. J. (1965). Emotional factors in prenatal environment: A review. The Journal of Nervous and Mental Disease, 141(1), 108–118.PubMedCrossRefGoogle Scholar
  56. Fox, S. E., Levitt, P., & Nelson, C. A., III. (2010). How the timing and quality of early experiences influence the development of brain architecture. Child Development, 81(1), 28–40. doi:10.1111/j.1467-8624.2009.01380.x.PubMedPubMedCentralCrossRefGoogle Scholar
  57. Gatt, J., Nemeroff, C., Dobson-Stone, C., Paul, R., Bryant, R., Schofield, P., … Williams, L. (2009). Interactions between BDNF Val66Met polymorphism and early life stress predict brain and arousal pathways to syndromal depression and anxiety. Molecular Psychiatry, 14(7), 681–695. doi:10.1038/mp.2008.143.Google Scholar
  58. Gillman, M. W. (2005). Developmental origins of health and disease. The New England Journal of Medicine, 353(17), 1848–1850. doi:10.1056/NEJMe058187.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Glover, V. (2011). Annual research review. Prenatal stress and the origins of psychopathology: An evolutionary perspective. Journal of Child Psychology and Psychiatry, 52(4), 356–367. doi:10.1111/j.1469-7610.2011.02371.x.PubMedCrossRefGoogle Scholar
  60. Glover, V. (2014). Maternal depression, anxiety and stress during pregnancy and child outcome; what needs to be done. Best Practice & Research. Clinical Obstetrics & Gynaecology, 28(1), 25–35. doi:10.1016/j.bpobgyn.2013.08.017.CrossRefGoogle Scholar
  61. Glover, V. (2015). Prenatal stress and its effects on the fetus and the child: Possible underlying biological mechanisms. In M. C. Antonelli (Ed.), Perinatal programming of neurodevelopment (Chapter 10). Advances in neurobiology (Vol. 10, pp. 269–283). New York, NY: Springer. doi:10.1007/978-1-4939-1372_10.Google Scholar
  62. Glover, V., O’Connor, T. G., & O’Donnell, K. (2010). Prenatal stress and the programming of the HPA axis. Neuroscience & Biobehavioral Reviews, 35(1), 17–22. doi:http://dx.doi.org/10.1016/j.neubiorev.2009.11.008.CrossRefGoogle Scholar
  63. Gluckman, P. D., & Hanson, M. A. (2004). Living with the past: Evolution, development, and patterns of disease. Science, 305(5691), 1733–1736. doi:10.1126/science.1095292.PubMedCrossRefGoogle Scholar
  64. Gluckman, P. D., Hanson, M. A., & Beedle, A. S. (2007). Early life events and their consequences for later disease: A life history and evolutionary perspective. American Journal of Human Biology, 19(1), 1–19. doi:10.1002/ajhb.20590.PubMedCrossRefGoogle Scholar
  65. Goldsmith, H., & Rothbart, M. (1999). The laboratory temperament assessment battery (Locomotor Version 3.1). Madison, WI: University of Wisconsin-Madison.Google Scholar
  66. Gottlieb, G. (1997). Synthesizing nature–nurture: Prenatal roots of instinctive behavior. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  67. Graignic-Philippe, R., Dayan, J., Chokron, S., Jacquet, A. Y., & Tordjman, S. (2014). Effects of prenatal stress on fetal and child development: A critical literature review. Neuroscience & Biobehavioral Reviews, 43, 137–162. doi:http://dx.doi.org/10.1016/j.neubiorev.2014.03.022.CrossRefGoogle Scholar
  68. Graven, S. N., & Browne, J. V. (2008). Sleep and brain development: The critical role of sleep in fetal and early neonatal brain development. Newborn and Infant Nursing Reviews, 8(4), 173–179. doi:http://dx.doi.org/10.1053/j.nainr.2008.10.008.CrossRefGoogle Scholar
  69. Gunnar, M., & Quevedo, K. (2007). The neurobiology of stress and development. Annual Review of Psychology, 58, 145–173. doi:10.1146/annurev.psych.58.110405.085605.PubMedCrossRefGoogle Scholar
  70. Gunnar, M. R., Talge, N. M., & Herrera, A. (2009). Stressor paradigms in developmental studies: What does and does not work to produce mean increases in salivary cortisol. Psychoneuroendocrinology, 34(7), 953–967. doi:http://dx.doi.org/10.1016/j.psyneuen.2009.02.010.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Hanson, M. A., & Gluckman, P. D. (2014). Early developmental conditioning of later health and disease: Physiology or pathophysiology? Physiological Reviews, 94(4), 1027–1076. doi:10.1152/physrev.00029.2013.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Hartman, C. A., Oldehinkel, A. J., De Winter, A. F., & Ormel, J. (2002). Nederlandse vertaling van de Early Adolescent Temperament Questionnaire [Dutch translation of the Early Adolescent Temperament Questionnaire] (Internal Report] (TRAILS Research Group, Department of Psychiatry, University of Groningen, Trans.) Groningen, the Netherlands.Google Scholar
  73. Heim, C., & Nemeroff, C. B. (2001). The role of childhood trauma in the neurobiology of mood and anxiety disorders: Preclinical and clinical studies. Biological Psychiatry, 49(12), 1023–1039. doi:http://dx.doi.org/10.1016/S0006-3223(01)01157-X.PubMedCrossRefGoogle Scholar
  74. Henrichs, J., & Van den Bergh, B. R. H. (2015). Perinatal developmental origins of self-regulation. In G. H. E. Gendolla, M. Tops, & S. L. Koole (Eds.), Handbook of biobehavioral approaches to self-regulation (pp. 349–370). New York, NY: Springer.Google Scholar
  75. Hepper, P. G. (1992). Fetal psychology: An embryonic science. In J. G. Nijhuis (Ed.), Fetal bebaviour: Developmental and perinatal aspects (pp. 129–146). Oxford: Oxford University Press.Google Scholar
  76. Hofer, M. A. (2014). The emerging synthesis of development and evolution: A new biology for psychoanalysis. Neuropsychoanalysis, 16(1), 3–22. doi:10.1080/15294145.2014.901022.CrossRefGoogle Scholar
  77. Holditch-Davis, D., & Edwards, L. J. (1998). Temporal organization of sleep–wake states in preterm infants. Developmental Psychobiology, 33(3), 257–269. doi:10.1002/(SICI)1098-2302(199811)33:3<257::AID-DEV6>3.0.CO;2-Q.PubMedCrossRefGoogle Scholar
  78. Hompes, T. (2014). The effect of maternal prenatal emotional wellbeing and maternal cortisol on fetal and child development. An epigenetic study (PhD thesis), KU Leuven, Doctoral School of Biomedical Sciences, Leuven, Belgium.Google Scholar
  79. Istvan, J. (1986). Stress, anxiety, and birth outcomes: A critical review of the evidence. Psychological Bulletin, 100(3), 331–348. doi:http://dx.doi.org/10.1037/0033-2909.100.3.331.PubMedCrossRefGoogle Scholar
  80. Jensen, P. S., Mrazek, D., Knapp, P. K., Steinberg, L., Pfeffer, C., Schowalter, J., & Shapiro, T. (1997). Evolution and Revolution in Child Psychiatry: ADHD as a Disorder of Adaptation. Journal of the American Academy of Child & Adolescent Psychiatry, 36(12), 1672–1681. doi:http://dx.doi.org/10.1097/00004583-199712000-00015.Google Scholar
  81. Jobin, J., Wrosch, C., & Scheier, M. F. (2014). Associations between dispositional optimism and diurnal cortisol in a community sample: When stress is perceived as higher than normal. Health Psychology, 33(4), 382. doi:http://dx.doi.org/10.1037/a0032736.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Joffe, J. M. (1969). Prenatal determinants of behaviour. New York, NY: Pergamon.Google Scholar
  83. Johnson, M. H. (2011). Interactive specialization: A domain-general framework for human functional brain development? Developmental Cognitive Neuroscience, 1(1), 7–21. doi:http://dx.doi.org/10.1016/j.dcn.2010.07.003.PubMedCrossRefGoogle Scholar
  84. Johnson, M. H., & de Haan, M. (2011). Developmental cognitive neuroscience (3rd ed.). Chichester, West Sussex: Wiley-Blackwell.Google Scholar
  85. Kafalí, H., Derbent, A., Keskí, E., Símavlí, Z., & Gözdemír, E. (2011). Effects of maternal anxiety and music on fetal movements and fetal heart rate patterns. The Journal of Maternal-Fetal and Neonatal Medicine, 24(3), 461–464.PubMedCrossRefGoogle Scholar
  86. Keng, S.-L., Smoski, M. J., & Robins, C. J. (2011). Effects of mindfulness on psychological health: A review of empirical studies. Clinical Psychology Review, 31(6), 1041–1056. doi:http://dx.doi.org/10.1016/j.cpr.2011.04.006.PubMedPubMedCentralCrossRefGoogle Scholar
  87. King, S., & Laplante, D. P. (2005). The effects of prenatal maternal stress on children’s cognitive development: Project Ice Storm. Stress: The International Journal on the Biology of Stress, 8(1), 35–45. doi:10.1080/10253890500108391.CrossRefGoogle Scholar
  88. Knobloch, H., & Pasamanick, B. (1966). Prospective studies on the epidemiology of reproductive casualty: Methods, findings, and some implications. Merrill-Palmer Quarterly of Behavior and Development, 12(1), 27–43.Google Scholar
  89. Kochanska, G., Coy, K. C., & Murray, K. T. (2001). The development of self-regulation in the first four years of life. Child Development, 72(4), 1091–1111. doi:10.1111/1467-8624.00336.PubMedCrossRefGoogle Scholar
  90. Kohls, N., Sauer, S., & Walach, H. (2009). Facets of mindfulness—Results of an online study investigating the Freiburg mindfulness inventory. Personality and Individual Differences, 46(2), 224–230. doi:10.1016/j.paid.2008.10.009.CrossRefGoogle Scholar
  91. Kolb, B., Mychasiuk, R., Muhammad, A., Li, Y., Frost, D. O., & Gibb, R. (2012). Experience and the developing prefrontal cortex. Proceedings of the National Academy of Sciences, 109(Supplement 2), 17186–17193. doi:10.1073/pnas.1121251109.CrossRefGoogle Scholar
  92. Koolhaas, J. M., Bartolomucci, A., Buwalda, B., de Boer, S. F., Flügge, G., Korte, S. M., … Fuchs, E. (2011). Stress revisited: A critical evaluation of the stress concept. Neuroscience & Biobehavioral Reviews, 35(5), 1291–1301. doi:http://dx.doi.org/10.1016/j.neubiorev.2011.02.003.Google Scholar
  93. Kopp, C. B. (1982). Antecedents of self-regulation: A developmental perspective. Developmental Psychology, 18(2), 199–214. doi:http://dx.doi.org/10.1037/0012-1649.18.2.199.CrossRefGoogle Scholar
  94. Kushnerenko, E. V., Van den Bergh, B. R. H., & Winkler, I. (2013). Separating acoustic deviance from novelty during the first year of life: A review of event-related potential evidence. Frontiers in Psychology, 4, 595. doi:10.3389/fpsyg.2013.00595.PubMedPubMedCentralGoogle Scholar
  95. Ladd, C.O., Huot, R.L., Thrivikraman, K.V., Nemeroff, C.B., Meaney, M.J., Plotsky, P.M. (1999). Long-term behavioral and neuroendocrine adaptations to adverse early experience. Progress in Brain Research, 122, 81–103. doi:10.1016/S0079-6123(08)62132-9.
  96. Laplante, D. P., Barr, R. G., Brunet, A., Du Fort, G. G., Meaney, M. L., Saucier, J. F., … King, S. (2004). Stress during pregnancy affects general intellectual and language functioning in human toddlers. Pediatric Research, 56(3), 400–410. doi:10.1203/01.pdr.0000136281.34035.44.Google Scholar
  97. Laplante, D. P., Brunet, A., Schmitz, N., Ciampi, A., & King, S. (2008). Project Ice storm: Prenatal maternal stress affects cognitive and linguistic functioning in 5½-year-old children. Journal of the American Academy of Child & Adolescent Psychiatry, 47(9), 1063–1072. doi:http://dx.doi.org/10.1097/CHI.0b013e31817eec80.CrossRefGoogle Scholar
  98. Lee, Y.-A., & Goto, Y. (2013). The effects of prenatal and postnatal environmental interaction: Prenatal environmental adaptation hypothesis. Journal of Physiology-Paris, 107(6), 483–492. doi:http://dx.doi.org/10.1016/j.jphysparis.2013.04.007.CrossRefGoogle Scholar
  99. Levine, S. (2005). Developmental determinants of sensitivity and resistance to stress. Psychoneuroendocrinology, 30, 939–946. doi:10.1016/j.psyneuen.2005.03.013.PubMedCrossRefGoogle Scholar
  100. Lewis, A., Galbally, M., Gannon, T., & Symeonides, C. (2014). Early life programming as a target for prevention of child and adolescent mental disorders. BMC Medicine, 12(1), 33. doi:10.1186/1741-7015-12-33.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Lewis, C. R., & Olive, M. F. (2014). Early-life stress interactions with the epigenome: Potential mechanisms driving vulnerability toward psychiatric illness. Behavioural Pharmacology, 25(5–6), 341–351. 310.1097/FBP.0000000000000057.PubMedPubMedCentralGoogle Scholar
  102. Li, J., Yang, H., Guldin, M.-B., Vedsted, P., & Vestergaard, M. (2015). Increased utilisation of primary healthcare in persons exposed to severe stress in prenatal life: A national population-based study in Denmark. BMJ Open, 5(1), e005657. doi:10.1136/bmjopen-2014-005657.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Lickliter, R. (2007). The dynamics of development and evolution: Insights from behavioral embryology. Developmental Psychobiology, 49(8), 749–757. doi:10.1002/dev.20270.PubMedCrossRefGoogle Scholar
  104. Lobel, M., DeVincent, C. J., Kaminer, A., & Meyer, B. A. (2000). The impact of prenatal maternal stress and optimistic disposition on birth outcomes in medically high-risk women. Health Psychology, 19(6), 544. doi:http://dx.doi.org/10.1037/a0013242.PubMedCrossRefGoogle Scholar
  105. Loomans, E. M. (2013). From the Womb into the World. Early life influences on neurocognitive functioning and behaviour in five to six year olds. (PhD thesis), Tilburg University, Tilburg, the Netherlands.Google Scholar
  106. Loomans, E., van der Stelt, O., van Eijsden, M., Gemke, R., Vrijkotte, T., & Van den Bergh, B. R. H. (2011). Antenatal maternal anxiety is associated with problem behaviour at age five. Early Human Development, 87, 565–570. doi:10.1016/j.earlhumdev.2011.04.014.PubMedCrossRefGoogle Scholar
  107. Loomans, E. M., van Dijk, A. E., Vrijkotte, T. G., van Eijsden, M., Stronks, K., Gemke, R. J., & Van den Bergh, B. R. (2013). Psychosocial stress during pregnancy is related to adverse birth outcomes: Results from a large multi-ethnic community-based birth cohort. The European Journal of Public Health, 23(3), 485–491.Google Scholar
  108. Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10(6), 434–445. doi:10.1038/nrn2639.PubMedCrossRefGoogle Scholar
  109. Lutz, P. E., & Turecki, G. (2014). DNA methylation and childhood maltreatment: From animal models to human studies. Neuroscience, 264, 142–156. doi:http://dx.doi.org/10.1016/j.neuroscience.2013.07.069.PubMedCrossRefGoogle Scholar
  110. Matthews, S. G., & Phillips, D. I. (2010). Minireview: Transgenerational inheritance of the stress response: A new frontier in stress research. Endocrinology, 151(1), 7–13. doi:10.1210/en.2009-0916.PubMedCrossRefGoogle Scholar
  111. McDonald, R.L. (1968). The role of emotional factors in obstetric complications: a review. Psychosomatic Medicine, 30(2), 222-237.Google Scholar
  112. McEwen, B. S., & Morrison, J. H. (2013). The brain on stress: Vulnerability and plasticity of the prefrontal cortex over the life course. Neuron, 79(1), 16–29. doi:http://dx.doi.org/10.1016/j.neuron.2013.06.028.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Meaney, M. J. (2010). Epigenetics and the biological definition of gene × environment interactions. Child Development, 81(1), 41–79. doi:10.1111/j.1467-8624.2009.01381.x.PubMedCrossRefGoogle Scholar
  114. Meaney, M. J., Szyf, M., & Seckl, J. R. (2007). Epigenetic mechanisms of perinatal programming of hypothalamic-pituitary-adrenal function and health. Trends in Molecular Medicine, 13(7), 269–277. doi:http://dx.doi.org/10.1016/j.molmed.2007.05.003.PubMedCrossRefGoogle Scholar
  115. Mennes, M. (2008). Longitudinal study on the effects of maternal anxiety during pregnancy: Neuropsychological and neurophysiological examination of cognitive control in the adolescent offspring. (PhD Thesis). Catholic University Leuven -KU Leuven, Leuven, Belgium.Google Scholar
  116. Mennes, M., Stiers, P., Lagae, L., & Van den Bergh, B. R. H. (2006). Long-term cognitive sequelae of antenatal maternal anxiety: Involvement of the orbitofrontal cortex. Neuroscience & Biobehavioral Reviews, 30(8), 1078–1086. doi:10.1016/j.neubiorev.2006.04.003.CrossRefGoogle Scholar
  117. Mennes, M., Van den Bergh, B. R. H., Lagae, L., & Stiers, P. (2009). Developmental brain alterations in 17 year old boys are related to antenatal maternal anxiety.Clinical. Neurophysiology, 120(6), 1116–1122. http://dx.doi.org/10.1016/j.neubiorev.2006.04.003.CrossRefGoogle Scholar
  118. Meyer, U., Nyffeler, M., Engler, A., Urwyler, A., Schedlowski, M., Knuesel, I., … Feldon, J. (2006). The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. The Journal of Neuroscience, 26(18), 4752–4762. doi:10.1523/JNEUROSCI.0099-06.2006.Google Scholar
  119. Michel, G. F., & Moore, C. L. (1995). Developmental psychobiology: An interdisciplinary science. Cambridge, MA: MIT Press.Google Scholar
  120. Milgrom, J., Holt, C., Holt, C. J., Ross, J., Ericksen, J., & Gemmill, A. W. (2015). Feasibility study and pilot randomised trial of an antenatal depression treatment with infant follow-up. Archives of Womens Mental Health, 1–14. doi:10.1007/s00737-015-0512-5.Google Scholar
  121. Mirmiran, M., Maas, Y. G. H., & Ariagno, R. L. (2003). Development of fetal and neonatal sleep and circadian rhythms. Sleep Medicine Reviews, 7(4), 321–334. doi:http://dx.doi.org/10.1053/smrv.2002.0243.PubMedCrossRefGoogle Scholar
  122. Monk, C., Fifer, W. P., Myers, M. M., Bagiella, E., Duong, J. K., Chen, I. S., … Altincatal, A. (2011). Effects of maternal breathing rate, psychiatric status, and cortisol on fetal heart rate. Developmental Psychobiology, 53(3), 221–233. doi: 10.1002/dev.20513.Google Scholar
  123. Monk, C., Sloan, R. P., Myers, M. M., Ellman, L., Werner, E., Jeon, J., … Fifer, W. P. (2004). Fetal heart rate reactivity differs by women’s psychiatric status: An early marker for developmental risk? Journal of the American Academy of Child & Adolescent Psychiatry, 43(3), 283–290. doi: 10.1097/00004583-200403000-00009.Google Scholar
  124. Mulder, E. J. H., Morssink, L. P., Van Der Schee, T., & Visser, G. H. A. (1998). Acute maternal alcohol consumption disrupts behavioral state organization in the near-term fetus. Pediatric Research, 44(5), 774–779. doi:10.1203/00006450-199811000-00022.PubMedCrossRefGoogle Scholar
  125. Mulder, E. J. H., Robles de Medina, P. G., Huizink, A. C., Van den Bergh, B. R. H., Buitelaar, J. K., & Visser, G. H. A. (2002). Prenatal maternal stress: Effects on pregnancy and the (unborn) child. Early Human Development, 70(1–2), 3–14. doi:http://dx.doi.org/10.1016/S0378-3782(02)00075-0.PubMedCrossRefGoogle Scholar
  126. Mulder, E. J. H., Ververs, F. F. T., de Heus, R., & Visser, G. H. A. (2011). Selective serotonin reuptake inhibitors affect neurobehavioral development in the human fetus. Neuropsychopharmacology, 36(10), 1961–1971. doi:http://dx.doi.org/10.1038/npp.2011.67.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Mulder, E. J. H., Visser, G. H. A., Bekedam, D. J., & Prechtl, H. F. R. (1987). Emergence of behavioural states in fetuses of type-l diabetic women. Early Human Development, 15(4), 231–252. doi:10.1016/0378-3782(87)90082-X.PubMedCrossRefGoogle Scholar
  128. Nathanielsz, P. W. (1999). Life in the Womb.: The origing of health and disease. Ithaca, NY: Promethean Press.Google Scholar
  129. Nederhof, E., & Schmidt, M. V. (2012). Mismatch or cumulative stress: Toward an integrated hypothesis of programming effects. Physiology & Behavior, 106(5), 691–700. doi:http://dx.doi.org/10.1016/j.physbeh.2011.12.008.CrossRefGoogle Scholar
  130. Nelson, C. A., Bloom, F. E., Cameron, J. L., Amaral, D., Dahl, R. E., & Pine, D. (2002). An integrative, multidisciplinary approach to the study of brain–behavior relations in the context of typical and atypical development. Development and Psychopathology, 14(03), 499–520. doi:10.1017/S0954579402003061.PubMedCrossRefGoogle Scholar
  131. Nijhuis, J. G., Prechtl, H. F. R., Martin, C. B., Jr., & Bots, R. S. G. M. (1982). Are there behavioural states in the human fetus? Early Human Development, 6(2), 177–195. doi:http://dx.doi.org/10.1016/0378-3782(82)90106-2.PubMedCrossRefGoogle Scholar
  132. Nijhuis, I. J. M., ten Hof, J., Nijhuis, J. G., Mulder, E. J. H., Narayan, H., Taylor, D. J., & Visser, G. H. A. (1999). Temporal organization of fetal behavior from 24-weeks gestation onwards in normal and complicated pregnancies. Developmental Psychobiology, 34(4), 257–268. doi:10.1002/(SICI)1098-2302(199905)34:2<257::AID-DEV2>3.0.CO;2-V.Google Scholar
  133. O’Connor, T., Heron, J., Golding, J., Beveridge, M., & Glover, V. (2002). Maternal antenatal anxiety and children’s behavioural/emotional problems at 4 years: Report from the Avon Longitudinal Study of Parents and Children. The British Journal of Psychiatry, 180, 502–508. doi:10.1192/bjp.180.6.502.PubMedCrossRefGoogle Scholar
  134. O’Connor, T. G., Heron, J., Golding, J., & Glover, V. (2003). Maternal antenatal anxiety and behavioural/emotional problems in children: A test of a programming hypothesis. Journal of Child Psychology and Psychiatry, 44(7), 1025–1036. doi:10.1111/1469-7610.00187.PubMedCrossRefGoogle Scholar
  135. O’Connor, T. G., Monk, C., & Fitelson, E. M. (2014). Practitioner review: Maternal mood in pregnancy and child development—Implications for child psychology and psychiatry. Journal of Child Psychology and Psychiatry, 55(2), 99–111. doi:10.1111/jcpp.12153.PubMedPubMedCentralCrossRefGoogle Scholar
  136. O’Donnell, K. J., Glover, V., Holbrook, J. D., & O’Connor, T. G. (2014). Maternal prenatal anxiety and child brain-derived neurotrophic factor (BDNF) genotype: Effects on internalizing symptoms from 4 to 15 years of age. Development and Psychopathology, 26(Special issue 4pt2), 1255–1266. doi:10.1017/S095457941400100X.PubMedCrossRefGoogle Scholar
  137. O’Donnell, K., O’Connor, T., & Glover, V. (2009). Prenatal stress and neurodevelopment of the child: Focus on the HPA axis and role of the placenta. Developmental Neuroscience, 31, 285–292. doi: 10.1159/000216539.PubMedCrossRefGoogle Scholar
  138. Ortega-Martínez, S. (2015). Influences of prenatal and postnatal stress on adult hippocampal neurogenesis: The double neurogenic niche hypothesis. Behavioural Brain Research, 281(5), 309–317. doi:http://dx.doi.org/10.1016/j.bbr.2014.12.036.PubMedCrossRefGoogle Scholar
  139. Otte, R. A. (2013). Prenatal expsoure to maternal anxiety affects neurocognitiion in the first year of year (Phd thesis), Tilburg University, Tilburg, the Netherlands.Google Scholar
  140. Otte, R. A., Winkler, I., Braeken, M. A. K. A., Stekelenburg, J. J., van der Stelt, O., & Van den Bergh, B. R. H. (2013). Detecting violations of temporal regularities in waking and sleeping two-month-old infants. Biological Psychology, 92(2), 315–322. doi:http://dx.doi.org/10.1016/j.biopsycho.2012.09.009.PubMedCrossRefGoogle Scholar
  141. Pasamanick, B., & Knobloch, H. (1966). Retrospective studies on the epidemiology of reproductive casualty: Old and new. Merrill-Palmer Quarterly of Behavior and Development, 12(1), 7–26.Google Scholar
  142. Pasamanick, B., Rogers, M. E., & Lilienfield, A. M. (1956). Pregnancy experience and the development of behavior disorders in children? American Journal of Psychiatry, 112(8), 613–618. doi:10.1176/ajp.112.8.613.PubMedCrossRefGoogle Scholar
  143. Peiper, A. (1925). Sinnesempfindungen des Kindes vor seiner Geburt. Monatsschrift für Kinderheilkunde, 29, 236–241.Google Scholar
  144. Peirano, P., Algarı́n, C., & Uauy, R. (2003). Sleep-wake states and their regulatory mechanisms throughout early human development. The Journal of Pediatrics, 143(4, Supplement), 70–79. doi:http://dx.doi.org/10.1067/S0022-3476(03)00404-9.CrossRefGoogle Scholar
  145. Phillips, D. I., & Jones, A. (2006). Fetal programming of autonomic and HPA function: Do people who were small babies have enhanced stress responses? The Journal of Physiology, 572(1), 45–50. doi:10.1113/jphysiol.2005.104695.PubMedPubMedCentralCrossRefGoogle Scholar
  146. Pollak, S. D. (2005). Early adversity and mechanisms of plasticity: Integrating affective neuroscience with developmental approaches to psychopathology. Development and Psychopathology, 17(03), 735–752. doi:http://dx.doi.org/10.1017/S0954579405050352.PubMedCrossRefGoogle Scholar
  147. Posner, M. I., & Rothbart, M. K. (2000). Developing mechanisms of self-regulation. Development and Psychopathology, 12(03), 427–441. doi:http://dx.doi.org/10.1017/S0954579400003096.CrossRefGoogle Scholar
  148. Prechtl, H. F. R. (1974). The behavioural states of the newborn infant (a review). Brain Research, 76(2), 185–212. doi:http://dx.doi.org/10.1016/0006-8993(74)90454-5.PubMedCrossRefGoogle Scholar
  149. Prechtl, H. F. R. (1984). Continuity and change in early neural development. In H. F. R. Prechtl (Ed.), Continuity of neural functions from prenatal to postnatal life (1st ed., pp. 1–15). London: Spastics international Medical Publications: Oxford Blackwell Scientific.Google Scholar
  150. Pruessner, J. C., Dedovic, K., Pruessner, M., Lord, C., Buss, C., Collins, L., … Lupien, S. J. (2010). Stress regulation in the central nervous system: Evidence from structural and functional neuroimaging studies in human populations—2008 Curt Richter Award Winner. Psychoneuroendocrinology, 35(1), 179–191. doi:http://dx.doi.org/10.1016/j.psyneuen.2009.02.016.Google Scholar
  151. Räikkönen, K., Seckl, J. R., Pesonen, A.-K., Simons, A., & Van den Bergh, B. R. H. (2011). Stress, glucocorticoids and liquorice in human pregnancy: Programmers of the offspring brain. Stress, 14(6), 590–603. doi:10.3109/10253890.2011.602147.PubMedCrossRefGoogle Scholar
  152. Ray, W. S. (1932). A preliminary report on a study of fetal conditioning. Child Development, 3(2), 175–177. doi:10.2307/1125392.Google Scholar
  153. Reul, J. M. H. M., Collins, A., Saliba, R. S., Mifsud, K. R., Carter, S. D., Gutierrez-Mecinas, M., … Linthorst, A. C. E. (2015). Glucocorticoids, epigenetic control and stress resilience. Neurobiology of Stress, 1(0), 44–59. doi:http://dx.doi.org/10.1016/j.ynstr.2014.10.001.
  154. Ross, L. E., & McLean, L. M. (2006). Anxiety disorders during pregnancy and the postpartum period: A systematic review. Journal of Clinical Psychiatry. doi:10.4088/JCP.v67n0818.PubMedGoogle Scholar
  155. Rothbart, M. K., & Ahadi, S. A. (1994). Temperament and the development of personality. Journal of Abnormal Psychology, 103(1), 55–66. doi:http://dx.doi.org/10.1037/0021-843X.103.1.55.PubMedCrossRefGoogle Scholar
  156. Rothbart, M. K., Ahadi, S. A., Hershey, K. L., & Fisher, P. (2001). Investigations of temperament at three to seven years: The children’s behavior questionnaire. Child Development, 72(5), 1394–1408. doi:10.1111/1467-8624.00355.PubMedCrossRefGoogle Scholar
  157. Rothbart, M. K., & Derryberry, D. (1981). Development of individual differences in temperament. In M. E. Lamb & A. L. Brown (Eds.), Advances in developmental psyvchology (Vol. 1, pp. 37–86). Hillsdale, NJ: Earlbaum.Google Scholar
  158. Rothbart, M. K., Sheese, B. E., Rueda, M. R., & Posner, M. I. (2011). Developing mechanisms of self-regulation in early life. Emotion Review, 3(2), 207–213. doi:10.1177/1754073910387943.PubMedPubMedCentralCrossRefGoogle Scholar
  159. Rothbart, Μ., & Bates, J. (1998). Temperament. In W. Damon (Series Ed.) & N. Eisenberg (Vol. Ed.), Handbook of child psychology: Vol. 3. Social, emotional, and personality development (pp. 105–176). New York, NY: Wiley.Google Scholar
  160. Rutter, M. (1987). Psychosocial resilience and protective mechanisms. American Journal of Orthopsychiatry, 75(3), 361–331.Google Scholar
  161. Rutter, M. (1995). Clinical implications of attachment concepts: Retrospect and prospect. Journal of Child Psychology and Psychiatry, 36(4), 549–571. doi:10.1111/j.1469-7610.1995.tb02314.x.PubMedGoogle Scholar
  162. Rutter, M. (2002). Nature, nurture, and development: From evangelism through science toward policy and practice. Child Development, 73(1), 1–21. doi:10.1111/1467-8624.00388.PubMedCrossRefGoogle Scholar
  163. Sameroff, A. J. (1975). Early influences on development: Fact or fancy? Merrill-Palmer Quarterly of Behavior and Development, 21, 267–294. doi: http://www.jstor.org/stable/23083878.Google Scholar
  164. Sameroff, A. J., & Chandler, M. J. (1975). Reproductive risk and the continuum of caretaking casualty. In F. D. Horowitz (Ed.), Review of child development research (Vol. 4, pp. 187–244). Chicago, IL: The University of Chicago Press.Google Scholar
  165. Sameroff, A. J., & Zax, M. (1973). Perinatal characteristics of the offspring of schizophrenic women. The Journal of Nervous and Mental Disease, 157(3), 191–199.PubMedCrossRefGoogle Scholar
  166. Schechter, D. S. (2012). The developmental neuroscience of emotional neglect, its consequences, and the psychosocial interventions that can reverse them. American Journal of Psychiatry, 169(5), 452–454. doi:10.1176/appi.ajp.2012.12020174.PubMedCrossRefGoogle Scholar
  167. Scher, M. S. (2008). Ontogeny of EEG-sleep from neonatal through infancy periods. Sleep Medicine, 9(6), 615–636. doi:http://dx.doi.org/10.1016/j.sleep.2007.08.014.PubMedCrossRefGoogle Scholar
  168. Scher, M. S., Steppe, D. A., & Banks, D. L. (1996). Prediction of lower developmental performances of healthy neonates by neonatal EEG-sleep measures. Pediatric Neurology, 14(2), 137–144. doi:http://dx.doi.org/10.1016/0887-8994(96)00013-6.PubMedCrossRefGoogle Scholar
  169. Schlotz, W., Jones, A., Godfrey, K. M., & Phillips, D. I. W. (2008). Effortful control mediates associations of fetal growth with hyperactivity and behavioural problems in 7- to 9-year-old children. Journal of Child Psychology and Psychiatry, 49(11), 1228–1236. doi:10.1111/j.1469-7610.2008.01946.x.PubMedGoogle Scholar
  170. Schlotz, W., & Phillips, D. I. W. (2009). Fetal origins of mental health: Evidence and mechanisms. Brain, Behavior, and Immunity, 23(7), 905–916. doi:http://dx.doi.org/10.1016/j.bbi.2009.02.001.PubMedCrossRefGoogle Scholar
  171. Seckl, J. R. (2007). Glucocorticoids, developmental ‘programming’ and the risk of affective dysfunction. Progress in Brain Research, 167, 17–34. http://dx.doi.org/10.1016/S0079-6123(07)67002-2.CrossRefGoogle Scholar
  172. Seckl, J. R., & Holmes, M. C. (2007). Mechanisms of disease: Glucocorticoids, their placental metabolism and fetal ‘programming’ of adult pathophysiology. Nature Clinical Practice Endocrinology & Metabolism, 3(6), 479–488. doi:10.1038/ncpendmet0515.CrossRefGoogle Scholar
  173. Sheehan, D., & Lecrubier, Y. (2010). The Mini International Neuropsychiatric Interview Version 6.0 (MINI 6.0. Jacksonville, FL: Medical Outcomes System.Google Scholar
  174. Smotherman, W. P., & Robinson, S. R. (1995). Tracing developmental trajectories into the prenatal period. In J.-P. Lecanuet, W. P. Fifer, N. A. Krasnegor, & W. P. Smotherman (Eds.), Fetal development: A psychobiological perspective (pp. 15–32). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  175. Sontag, L. W. (1941). The significance of fetal environmental differences. American Journal of Obstetrics & Gynecology, 42(6), 996–1003.Google Scholar
  176. Sontag, L. W. (1944). Differences in modifiability of fetal behavior and physiology. Psychosomatic Medicine, 6, 151–154.CrossRefGoogle Scholar
  177. Sontag, L. W. (1966). Impliations of fetal behavior and environment for adult personalities. Annals of the New York Academy of Sciences, 134(2), 782–786. doi:10.1111/j.1749-6632.1966.tb43063.x.CrossRefGoogle Scholar
  178. Sontag, L. W., & Wallace, R. F. (1934). Preliminary report of the fels fund: Study of fetal activity. American Journal of Diseases of Children, 48(5), 1050–1057.CrossRefGoogle Scholar
  179. Spelt, D. K. (1948). The conditioning of the human fetus in utero. Journal of Experimental Psychology, 38(3), 338–346. doi:org/10.1037/h0059632.PubMedCrossRefGoogle Scholar
  180. Spielberger, C. D., Gorsuch, R. L., & Lushene, R. E. (1970). Manual for the state trait anxiety inventory. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
  181. Stern, D. N. (2009). The first relationship: Infant and mother. Cambridge, MA: Harvard University Press.Google Scholar
  182. Stott, D. H. (1958). Some psychosomatic aspects of casualty in reproduction. Journal of Psychosomatic Research, 3(1), 42–55. doi:http://dx.doi.org/10.1016/0022-3999(58)90015-1.PubMedCrossRefGoogle Scholar
  183. Stott, D. H. (1973). Follow-up study from birth of the effects of prenatal stresses. Developmental Medicine & Child Neurology, 15(6), 770–787. doi:10.1111/j.1469-8749.1973.tb04912.x.CrossRefGoogle Scholar
  184. Stott, D. H., & Latchford, S. A. (1976). Prenatal antecedents of child health, development, and behavior: An epidemiological report of incidence and association. Journal of the American Academy of Child Psychiatry, 15(1), 161–191. doi:http://dx.doi.org/10.1016/S0002-7138(09)62267-6.PubMedCrossRefGoogle Scholar
  185. Swaab, D. F., Bao, A.-M., & Lucassen, P. J. (2005). The stress system in the human brain in depression and neurodegeneration. Ageing Research Reviews, 4(2), 141–194. doi:http://dx.doi.org/10.1016/j.arr.2005.03.003.PubMedCrossRefGoogle Scholar
  186. Tegethoff, M., Greene, N., Olsen, J., Schafner, E., & Meinlschmidt, G. (2011). Stress during pregnancy and offspring pediatric disease: A national cohort study. Environmental Health Perspectives, 11(9), 1647–1152.CrossRefGoogle Scholar
  187. Thayer, J. F., & Lane, R. D. (2007). The role of vagal function in the risk for cardiovascular disease and mortality. Biological Psychology, 74(2), 224–242. doi:10.1016/j.biopsycho.2005.11.013.PubMedCrossRefGoogle Scholar
  188. Thayer, J. F., & Sternberg, E. (2006). Beyond heart rate variability. Annals of the New York Academy of Sciences, 1088(1), 361–372. doi:10.1196/annals.1366.014.PubMedCrossRefGoogle Scholar
  189. Thayer, J. F., Yamamoto, S. S., & Brosschot, J. F. (2010). The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. International Journal of Cardiology, 141(2), 122–131.PubMedCrossRefGoogle Scholar
  190. Van Assche, F. A. (1997). Birthweight as a risk factor for breast cancer. The Lancet, 349, 502.CrossRefGoogle Scholar
  191. Van Assche, F. A., Holemans, K., & Aerts, L. (2001). Long-term consequences for offspring of diabetes during pregnancy. British Medical Bulletin, 60(1), 173–182. doi:10.1093/bmb/60.1.173.PubMedCrossRefGoogle Scholar
  192. Van den Bergh, B. (1981). Factoren die de prenatale ontwikkeling beïnvloeden. Literatuurstudie aangaande factoren die het prenataal intra-uterien milieu bepalen en die te beschouwen zijn als prenatale determinanten van postnataal gedrag. [Factors influencing prenatal development. Review of the literature concerning factors constituting the prenatal intra-uterine environment that can be regarded as prenatal determinants of postnatal behavior] (Master thesis), Katholieke Universiteit Leuven, Leuven, Belgium.Google Scholar
  193. Van den Bergh, B. (1983). De psychische toestand van de zwangere en de prenatale ontwikkeling. Literatuurstudie en schets van een heuristisch model. [The psychological state of the pregnant woman and prenatal development. Review of the literature and heuristic model]. Tijdschrift voor Orthopedagogie, Kinderpsychiatrie en Klinische Kinderpsychologie, 8(1), 18–37.Google Scholar
  194. Van den Bergh, B. (1989). De emotionele toestand van de (zwangere) vrouw, obstetrische complicaties en het gedrag en de ontwikkeling van de foetus en van het kind tot de leeftijd van zeven maanden. [The emotional state of the (pregnant) woman, obstetrical complications and the behavior and development of fetus and child until seven months after birth] (PhD thesis), Katholieke Universiteit Leuven, Leuven, Belgium.Google Scholar
  195. Van den Bergh, B. R. H. (1990). The influence of maternal emotions during pregnancy on fetal and neonatal behavior. Journal of Prenatal & Perinatal Psychology & Health, 5(2), 119–130.Google Scholar
  196. Van den Bergh, B. R. H. (1992). Maternal emotions during pregnancy and fetal and neonatal behaviour. In J. G. Nijhuis (Ed.), Fetal behaviour. Developmental and perinatal aspects (pp. 157–178). New York, NY: Oxford University Press.Google Scholar
  197. Van den Bergh, B.R.H. (2010). To become or to be? The duality of neurodevelopment has a perinatal and therefore also a societal dimension. Inaugural address at Tilburg University May 10, 2010. Prismaprint Tilburg University, Tilburg, the Netherlands.Google Scholar
  198. Van den Bergh, B. R. H. (2011a). Developmental programming of early brain and behaviour development and mental health: A conceptual framework. Developmental Medicine & Child Neurology, 53, 19–23. doi:10.1111/j.1469-8749.2011.04057.x.CrossRefGoogle Scholar
  199. Van den Bergh, B. R. H. (2011b). Prenatal programming of cognition and emotion in humans: From birth to age 20. In A. Plagemann (Ed.), Perinatal programming: The state of the art (pp. 199–205). Berlin: Walter de Gruyter.CrossRefGoogle Scholar
  200. Van den Bergh, B. R. H., & Ackx, M. (2003). Een Nederlandse versie van Rothbarts’ Children’s Behavior Questionnaire’: Interne consistentie en driefactorenmodel van de subschalen. [Temperament measured using a Dutch version of Rothbart’s ‘Children’s Behavior Questionnaire’. Evidence for a three-factor structure of the subscales]. Kind en Adolescent, 24(2), 77–84.Google Scholar
  201. Van den Bergh, B. R. H., Loomans, E. M., & Mennes, M. (2015). Early life influences on cognition, behavior, and emotion in humans: From birth to age 20. In M. C. Antonelli (Ed.), Perinatal programming of neurodevelopment (Chapter 15). Advances in neurobiology (Vol. 10, pp. 315–331). New York, NY: Springer. doi:10.1007/978-1-4939-1372-5_15.Google Scholar
  202. Van den Bergh, B. R. H., & Marcoen, A. (2004). High antenatal maternal anxiety is related to ADHD symptoms, externalizing problems, and anxiety in 8- and 9-year-olds. Child Development, 75(4), 1085–1097. doi:10.1111/j.1467-8624.2004.00727.x.PubMedCrossRefGoogle Scholar
  203. Van den Bergh, B. R. H., Mennes, M., Oosterlaan, J., Stevens, V., Stiers, P., Marcoen, A., & Lagae, L. (2005). High antenatal maternal anxiety is related to impulsivity during performance on cognitive tasks in 14-and 15-year-olds. Neuroscience & Biobehavioral Reviews, 29(2), 259–269. doi:10.1016/j.neubiorev.2004.10.010Google Scholar
  204. Van den Bergh, B. R. H., & Mulder, E. J. H. (2012). Fetal sleep organization: A biological precursor of self-regulation in childhood and adolescence? Biological Psychology, 89(3), 584–590. doi:http://dx.doi.org/10.1016/j.biopsycho.2012.01.003.PubMedCrossRefGoogle Scholar
  205. Van den Bergh, B. R. H., Mulder, E. J. H., Mennes, M., & Glover, V. (2005). Antenatal maternal anxiety and stress and the neurobehavioural development of the fetus and child: Links and possible mechanisms. A review. Neuroscience & Biobehavioral Reviews, 29(2), 237–258. doi:http://dx.doi.org/10.1016/j.neubiorev.2004.10.007.CrossRefGoogle Scholar
  206. Van den Bergh, B. R. H., Mulder, E. J. H., Visser, G. H. A., Poelmann-Weesjes, G., Bekedam, D. J., & Prechtl, H. F. R. (1989). The effect of (induced) maternal emotions on fetal behaviour: A controlled study. Early Human Development, 19(1), 9–19. doi:org/10.1016/0378-3782(89)90100-X.PubMedCrossRefGoogle Scholar
  207. Van den Bergh, B. R. H., Van Calster, B., Smits, T., Van Huffel, S., & Lagae, L. (2008). Antenatal maternal anxiety is related to HPA-axis dysregulation and self-reported depressive symptoms in adolescence: A prospective study on the fetal origins of depressed mood. Neuropsychopharmacology, 33(3), 536–545. doi:10.1038/sj.npp.1301450.PubMedCrossRefGoogle Scholar
  208. van den Heuvel, M. I., Donkers, F. C., Winkler, I., Otte, R. A., & Van den Bergh, B. R. (2014). Maternal mindfulness and anxiety during pregnancy affect infants’ neural responses to sounds. Social Cognitive and Affective Neuroscience, 91, 103–108. doi:10.1093/scan/nsu075.Google Scholar
  209. Van der Ploeg, H., & Defares, P. (1980). ZBV: Handleiding bij de zelf-beoordelings vragenlijst: een Nederlandstalige bewerking van Spielberger state-trait anxiety inventory STAI-Y. Amsterdam: Harcourt.Google Scholar
  210. Vandenberghe, K., & De Wolf, F. (1990). Ultrasonic assessment of fetal stomach function. In A. Kurjak (Ed.), Physiology and clinic, recent advances in ultrasound diagnosis, 2 (pp. 275–282). Amsterdam: Excerpta Medica.Google Scholar
  211. Verhulst, F. C., van der Ende, J., & Koot, H. M. (1996). Handleiding voor the CBCL/14 – 18 [Manual for the CBCL/14 – 18] Rotterdam, the Netherlands: Afdeling Kinder-en Jeugdpsychiatrie, Sophia Kinderziekenhuis/Adacemisch Ziekenhuis/Erasmus Universiteit.Google Scholar
  212. Visser, G. H. A., Mulder, E. J. H., & Prechtl, H. F. R. (1992). Studies on developmental neurology in the human fetus. Developmental Pharmacology and Therapeutics, 18(3-4), 175–183.PubMedGoogle Scholar
  213. Visser, G. H. A., Poelman-Weesjes, G., Cohen, T. M. N., & Bekedam, D. J. (1987). Fetal behavior at 30 to 32 weeks of gestation. Pediatric Research, 22(6), 655–658. doi:10.1203/00006450-198712000-00009.PubMedCrossRefGoogle Scholar
  214. Vlemincx, E., Taelman, J., De Peuter, S., Van Diest, I., & Van Den Bergh, O. (2011). Sigh rate and respiratory variability during mental load and sustained attention. Psychophysiology, 48(1), 117–120. doi:10.1111/j.1469-8986.2010.01043.x.PubMedCrossRefGoogle Scholar
  215. Walach, H., Buchheld, N., Buttenmuller, V., Kleinknecht, N., & Schmidt, S. (2006). Measuring mindfulness—The Freiburg Mindfulness Inventory (FMI). Personality and Individual Differences, 40(8), 1543–1555. doi:10.1016/j.paid.2005.11.025.CrossRefGoogle Scholar
  216. Weaver, I. C., Cervoni, N., Champagne, F. A., D’Alessio, A. C., Sharma, S., Seckl, J. R., … Meaney, M. J. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7(8), 847–854. doi:10.1038/nn1276.Google Scholar
  217. Weinstock, M. (2005). The potential influence of maternal stress hormones on development and mental health of the offspring. Brain, Behavior, and Immunity, 19, 296–308. doi:10.1016/j.bbi.2004.09.006.PubMedCrossRefGoogle Scholar
  218. Weinstock, M. (2008). The long-term behavioural consequences of prenatal stress. Neuroscience & Biobehavioral Reviews, 32(6), 1073–1086. doi:http://dx.doi.org/10.1016/j.neubiorev.2008.03.002.CrossRefGoogle Scholar
  219. Winkler, I. (2007). Interpreting the Mismatch Negativity. Journal of Psychophysiology, 21(3), 147–163. doi:10.1027/0269-8803.21.34.147.CrossRefGoogle Scholar
  220. Winkler, I., Háden, G. P., Ladinig, O., Sziller, I., & Honing, H. (2009). Newborn infants detect the beat in music. Proceedings of the National Academy of Sciences, 106(7), 2468–2471. doi:10.1073/pnas.0809035106.CrossRefGoogle Scholar
  221. Winkler, I., Kushnerenko, E., Horváth, J., Čeponienė, R., Fellman, V., Huotilainen, M., … Sussman, E. (2003). Newborn infants can organize the auditory world. Proceedings of the National Academy of Sciences, 100(20), 11812–11815. doi:10.1073/pnas.2031891100.Google Scholar
  222. Young, J. B. (2002). Programming of sympathoadrenal function. Trends in Endocrinology & Metabolism, 13(9), 381–385. doi:10.1016/S1043-2760(02)00661-6.CrossRefGoogle Scholar
  223. Zannas, A. S., & West, A. E. (2014). Epigenetics and the regulation of stress vulnerability and resilience. Neuroscience, 264, 157–170. doi:http://dx.doi.org/10.1016/j.neuroscience.2013.12.003.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Tilburg School of Social and Behavioural SciencesTilburg UniversityTilburgThe Netherlands
  2. 2.Health PsychologyCatholic University of Leuven (KU Leuven)LeuvenBelgium
  3. 3.Department of Welfare, Public Health and FamilyFlemish GovernmentBrusselsBelgium

Personalised recommendations