Skip to main content

Leader Election and Shape Formation with Self-organizing Programmable Matter

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9211)

Abstract

In this paper we consider programmable matter consisting of simple computational elements, called particles, that can establish and release bonds and can actively move in a self-organized way, and we investigate the feasibility of solving fundamental problems relevant for programmable matter. As a model for such self-organizing particle systems, we will use a generalization of the geometric amoebot model first proposed in [21]. Based on the geometric model, we present efficient local-control algorithms for leader election and line formation requiring only particles with constant size memory, and we also discuss the limitations of solving these problems within the general amoebot model.

Keywords

  • Shared Memory
  • Particle System
  • Leader Election
  • Shape Formation
  • Outer Border

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Z. Derakhshandeh and A.W. Richa—Supported in part by the NSF under Awards CCF-1353089 and CCF-1422603.

R. Gmyr, T. Strothmann and C. Scheideler—Supported in part by DFG grant SCHE 1592/3-1.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-21999-8_8
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-21999-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Notes

  1. 1.

    For a simulation video of the Line Formation Algorithm please see http://sops.cs.upb.de.

References

  1. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(11), 1021–1024 (1994)

    CrossRef  Google Scholar 

  2. Agathangelou, C., Georgiou, C., Mavronicolas, M.: A distributed algorithm for gathering many fat mobile robots in the plane. In: Proceedings of the 32nd ACM Symposium on Principles of Distributed Computing (PODC), pp. 250–259 (2013)

    Google Scholar 

  3. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18(4), 235–253 (2006)

    CrossRef  Google Scholar 

  4. Arbuckle, D., Requicha, A.: Self-assembly and self-repair of arbitrary shapes by a swarm of reactive robots: algorithms and simulations. Auton. Robots 28(2), 197–211 (2010)

    CrossRef  Google Scholar 

  5. Awerbuch, B., Ostrovsky, R.: Memory-efficient and self-stabilizing network RESET (extended abstract). In: Proceedings of the Thirteenth Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 254–263 (1994)

    Google Scholar 

  6. Barriere, L., Flocchini, P., Mesa-Barrameda, E., Santoro, N.: Uniform scattering of autonomous mobile robots in a grid. Int. J. Found. Comput. Sci. 22(3), 679–697 (2011)

    MathSciNet  CrossRef  Google Scholar 

  7. Bhattacharyya, A., Braverman, M., Chazelle, B., Nguyen, H.L.: On the convergence of the hegselmann-krause system. In: Proceedings of the 4th Innovations in Theoretical Computer Science (ITCS), pp. 61–66 (2013)

    Google Scholar 

  8. Boneh, D., Dunworth, C., Lipton, R.J., Sgall, J.: On the computational power of DNA. Discrete Appl. Math. 71, 79–94 (1996)

    MathSciNet  CrossRef  Google Scholar 

  9. Bonifaci, V., Mehlhorn, K., Varma, G.: Physarum can compute shortest paths. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 233–240 (2012)

    Google Scholar 

  10. Butler, Z.J., Kotay, K., Rus, D., Tomita, K.: Generic decentralized control for lattice-based self-reconfigurable robots. Int. J. Robot. Res. 23(9), 919–937 (2004)

    CrossRef  Google Scholar 

  11. B. Chazelle. Natural algorithms. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 422–431 (2009)

    Google Scholar 

  12. Chen, H.-L., Doty, D., Holden, D., Thachuk, C., Woods, D., Yang, C.-T.: Fast algorithmic self-assembly of simple shapes using random agitation. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 20–36. Springer, Heidelberg (2014)

    Google Scholar 

  13. Chen, M., Xin, D., Woods, D.: Parallel computation using active self-assembly. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 16–30. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  14. Cheung, K.C., Demaine, E.D., Bachrach, J.R., Griffith, S.: Programmable assembly with universally foldable strings (moteins). IEEE Trans. Robot. 27(4), 718–729 (2011)

    CrossRef  Google Scholar 

  15. Chirikjian, G.: Kinematics of a metamorphic robotic system. In: Proceedings of the 1994 International Conference on Robotics and Automation (ICRA), pp. 449–455 (1994)

    Google Scholar 

  16. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)

    MathSciNet  CrossRef  Google Scholar 

  17. Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems. Theor. Comput. Sci. 399(1–2), 71–82 (2008)

    MathSciNet  CrossRef  Google Scholar 

  18. Das, S., Flocchini, P., Santoro, N., Yamashita, M.: On the computational power of oblivious robots: forming a series of geometric patterns. In: Proceedings of 29th ACM Symposium on Principles of Distributed Computing (PODC) (2010)

    Google Scholar 

  19. Defago, X., Souissi, S.: Non-uniform circle formation algorithm for oblivious mobile robots with convergence toward uniformity. Theor. Comput. Sci. 396(1–3), 97–112 (2008)

    MathSciNet  CrossRef  Google Scholar 

  20. Demaine, E.D., Patitz, M.J., Schweller, R.T., Summers, S.M.: Self-assembly of arbitrary shapes using rnase enzymes: meeting the kolmogorov bound with small scale factor (extended abstract). In: Proceedings of the 28th International Symposium on Theoretical Aspects of Computer Science, pp. 201–212 (2011)

    Google Scholar 

  21. Derakhshandeh, Z., Dolev, S., Gmyr, R., Richa, A., Scheideler, C., Strothmann, T.: Brief announcement: amoebot – a new model for programmable matter. In: Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architectures, (SPAA), pp. 220–222 (2014)

    Google Scholar 

  22. Doty, D.: Theory of algorithmic self-assembly. Commun. ACM 55(12), 78–88 (2012)

    CrossRef  Google Scholar 

  23. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communicating: ring exploration by asynchronous oblivious robots. Algorithmica 65(3), 562–583 (2013)

    MathSciNet  CrossRef  Google Scholar 

  24. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1), 412–447 (2008)

    MathSciNet  CrossRef  Google Scholar 

  25. Fukuda, T., Nakagawa, S., Kawauchi, Y., Buss, M.: Self organizing robots based on cell structures - cebot. In: Proceedings of the International Conference on Intelligent Robots and Systems, (IROS), pp. 145–150 (1988)

    Google Scholar 

  26. Hendricks, J., Patitz, M.J., Rogers, T.A.: Replication of arbitrary hole-free shapes via self-assembly with signal-passing tiles (2015). arXiv preprint arXiv:1503.01244

  27. Hsiang, T.-R., Arkin, E., Bender, M., Fekete, S., Mitchell, J.: Algorithms for rapidly dispersing robot swarms in unknown environments. In: Proceedings of the 5th Workshop on Algorithmic Foundations of Robotics (WAFR), pp. 77–94 (2002)

    Google Scholar 

  28. Itai, A., Rodeh, M.: Symmetry breaking in distributive networks. In: 22nd Annual Symposium on Foundations of Computer Science, (FOCS), pp. 150–158 (1981)

    Google Scholar 

  29. Itkis, G., Levin, L.: Fast and lean self-stabilizing asynchronous protocols. In: 35th Annual Symposium on Foundations of Computer Science, (FOCS), pp. 226–239 (1994)

    Google Scholar 

  30. Kernbach, S. (ed.): Handbook of Collective Robotics - Fundamentals and Challanges. Pan Stanford Publishing, Singapore (2012)

    Google Scholar 

  31. Kling, P., Meyer auf der Heide, F.: Convergence of local communication chain strategies via linear transformations. In: Proceedings of the 23rd ACM Symposium on Parallelism in Algorithms and Architectures, (SPAA), pp. 159–166 (2011)

    Google Scholar 

  32. Li, K., Thomas, K., Torres, C., Rossi, L., Shen, C.-C.: Slime mold inspired path formation protocol for wireless sensor networks. In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 299–311. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  33. McLurkin, J.: Analysis and implementation of distributed algorithms for multi-robot systems. Ph.D. thesis, Massachusetts Institute of Technology (2008)

    Google Scholar 

  34. Patitz, M.J.: An introduction to tile-based self-assembly and a survey of recent results. Nat. Comput. 13(2), 195–224 (2014)

    MathSciNet  CrossRef  Google Scholar 

  35. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345(6198), 795–799 (2014)

    CrossRef  Google Scholar 

  36. Walter, J.E., Welch, J.L., Amato, N.M.: Distributed reconfiguration of metamorphic robot chains. Distrib. Comput. 17(2), 171–189 (2004)

    CrossRef  Google Scholar 

  37. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional dna crystals. Nature 394(6693), 539–544 (1998)

    CrossRef  Google Scholar 

  38. Woods, D.: Intrinsic universality and the computational power of self-assembly. In: Neary, T., Cook, M. (eds) Proceedings of the 6th Conference on Machines, Computations and Universality 2013, (MCU), EPTCS, vol. 128, pp. 16–22 (2013)

    Google Scholar 

  39. Woods, D., Chen, H., Goodfriend, S., Dabby, N., Winfree, E., Yin, P.: Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In: Proceedings of the 4th Conference on Innovations in Theoretical Computer Science, ITCS, pp. 353–354 (2013)

    Google Scholar 

  40. Yim, M., Shen, W.-M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.S.: Modular self-reconfigurable robot systems. IEEE Robot. Autom. Mag. 14(1), 43–52 (2007)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thim Strothmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Derakhshandeh, Z., Gmyr, R., Strothmann, T., Bazzi, R., Richa, A.W., Scheideler, C. (2015). Leader Election and Shape Formation with Self-organizing Programmable Matter. In: Phillips, A., Yin, P. (eds) DNA Computing and Molecular Programming. DNA 2015. Lecture Notes in Computer Science(), vol 9211. Springer, Cham. https://doi.org/10.1007/978-3-319-21999-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21999-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21998-1

  • Online ISBN: 978-3-319-21999-8

  • eBook Packages: Computer ScienceComputer Science (R0)