Skip to main content

Flipping Tiles: Concentration Independent Coin Flips in Tile Self-Assembly

  • 1105 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9211)

Abstract

In this paper we introduce the robust coin flip problem in which one must design an abstract tile assembly system (aTAM system) whose terminal assemblies can be partitioned such that the final assembly lies within either partition with exactly probability 1/2, regardless of what relative concentration assignment is given to the tile types of the system. We show that robust coin flipping is possible within the aTAM, and that such systems can guarantee a worst case \(\mathcal {O}(1)\) space usage. As an application, we then combine our coin-flip system with the result of Chandran, Gopalkrishnan, and Reif [3] to show that for any positive integer n, there exists a \(\mathcal {O}(\log n)\) tile system that assembles a constant-width linear assembly of expected length n that works for all concentration assignments. We accompany our primary construction with variants that show trade-offs in space complexity, initial seed size, temperature, tile complexity, bias, and extensibility, and also prove some negative results. Further, we consider the harder scenario in which tile concentrations change arbitrarily at each assembly step and show that while this is not solvable in the aTAM, this version of the problem can be solved by more exotic tile assembly models from the literature.

Keywords

  • Concentration Distribution
  • Tile System
  • Tile Type
  • Bond Graph
  • Fair Coin

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

C.T. Chalk, A. Huerta, M.A. Maldonado, E. Martinez and R.T. Schweller—Research supported in part by National Science Foundation Grant CCF-1117672.

B. Fu—Research supported by National Science Foundation Early Career Award 0845376.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-21999-8_6
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-21999-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

References

  1. Becker, F., Rapaport, I., Rémila, É.: Self-assemblying classes of shapes with a minimum number of tiles, and in optimal time. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 45–56. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  2. Bryans, N., Chiniforooshan, E., Doty, D., Kari, L., Seki, S.: The power of nondeterminism in self-assembly. In: Proceedings of the 22nd ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, SIAM, pp. 590–602 (2011)

    Google Scholar 

  3. Chandran, H., Gopalkrishnan, N., Reif, J.: Tile complexity of linear assemblies. SIAM J. Comput. 41(4), 1051–1073 (2012)

    MathSciNet  CrossRef  MATH  Google Scholar 

  4. Chen, H.-L., Goel, A.: Error free self-assembly using error prone tiles. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 62–75. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  5. Cheng, Q., Aggarwal, G., Goldwasser, M.H., Kao, M.-Y., Schweller, R.T., de Espanés, P.M.: Complexities for generalized models of self-assembly. SIAM J. Comput. 34, 1493–1515 (2005)

    MathSciNet  CrossRef  MATH  Google Scholar 

  6. Cook, M., Fu, Y., Schweller, R.T.: Temperature 1 self-assembly: deterministic assembly in 3D and probabilistic assembly in 2D. In: Proceedings of the 22nd ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, pp. 570–589 (2011)

    Google Scholar 

  7. Demaine, E.D., Demaine, M.L., Fekete, S.P., Patitz, M.J., Schweller, R.T., Winslow, A., Woods, D.: One tile to rule them all: simulating any tile assembly system with a single universal tile. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 368–379. Springer, Heidelberg (2014)

    Google Scholar 

  8. Doty, D.: Theory of algorithmic self-assembly. Commun. ACM 55(12), 78–88 (2012)

    CrossRef  Google Scholar 

  9. Doty, D.: Randomized self-assembly for exact shapes. SIAM J. Comput. 39(8), 3521–3552 (2010)

    MathSciNet  CrossRef  MATH  Google Scholar 

  10. Doty, D., Kari, L., Masson, B.: Negative interactions in irreversible self-assembly. In: Sakakibara, Y., Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 37–48. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  11. Doty, D., Lutz, J.H., Patitz, M.J., Summers, S.M., Woods, D.: Random number selection in self-assembly. In: Calude, C.S., Costa, J.F., Dershowitz, N., Freire, E., Rozenberg, G. (eds.) UC 2009. LNCS, vol. 5715, pp. 143–157. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  12. Evans, C.: Crystals that count! physical principles and experimental investigations of dna tile self-assembly. Ph.D. thesis, California Institute of Technology (2014)

    Google Scholar 

  13. Fekete, S.P., Hendricks, J., Patitz, M.J., Rogers, T.A., Schweller, R.T.: Universal computation with arbitrary polyomino tiles in non-cooperative self-assembly. In: Proceedings of the 25th ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, SIAM, pp. 148–167 (2015)

    Google Scholar 

  14. Fu, B., Patitz, M.J., Schweller, R.T., Sheline, R.: Self-assembly with geometric tiles. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 714–725. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  15. Kao, M.-Y., Schweller, R.T.: Randomized self-assembly for approximate shapes. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 370–384. Springer, Heidelberg (2008)

    CrossRef  Google Scholar 

  16. Keenan, A., Schweller, R., Sherman, M., Zhong, X.: Fast arithmetic in algorithmic self-assembly. In: Ibarra, O.H., Kari, L., Kopecki, S. (eds.) UCNC 2014. LNCS, vol. 8553, pp. 242–253. Springer, Heidelberg (2014)

    Google Scholar 

  17. Patitz, M.J.: An introduction to tile-based self-assembly and a survey of recent results. Natural Comput. 13(2), 195–224 (2014)

    MathSciNet  CrossRef  Google Scholar 

  18. Patitz, M.J., Schweller, R.T., Summers, S.M.: Exact shapes and turing universality at temperature 1 with a single negative glue. In: Cardelli, L., Shih, W. (eds.) DNA 17 2011. LNCS, vol. 6937, pp. 175–189. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  19. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares (extended abstract). In: Proceedings of the 32nd ACM Symposium on Theory of Computing, STOC 2000, pp. 459–468 (2000)

    Google Scholar 

  20. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM J. Comput. 36(6), 1544–1569 (2007)

    MathSciNet  CrossRef  MATH  Google Scholar 

  21. von Neumann, J.: Various techniques used in connection with random digits. J. Res. Natl Bur. Stan. 12, 36–38 (1951)

    Google Scholar 

  22. Winfree, E.: Algorithmic self-assembly of DNA. Ph.D. thesis, California Institute of Technology (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cameron T. Chalk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chalk, C.T. et al. (2015). Flipping Tiles: Concentration Independent Coin Flips in Tile Self-Assembly. In: Phillips, A., Yin, P. (eds) DNA Computing and Molecular Programming. DNA 2015. Lecture Notes in Computer Science(), vol 9211. Springer, Cham. https://doi.org/10.1007/978-3-319-21999-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21999-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21998-1

  • Online ISBN: 978-3-319-21999-8

  • eBook Packages: Computer ScienceComputer Science (R0)