Biogas Science and Technology pp 171-195

Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 151)

Fate of Trace Metals in Anaerobic Digestion

  • F. G. Fermoso
  • E. D. van Hullebusch
  • G. Guibaud
  • G. Collins
  • B. H. Svensson
  • C. Carliell-Marquet
  • J. P. M. Vink
  • G. Esposito
  • L. Frunzo

Abstract

A challenging, and largely uncharted, area of research in the field of anaerobic digestion science and technology is in understanding the roles of trace metals in enabling biogas production. This is a major knowledge gap and a multifaceted problem involving metal chemistry; physical interactions of metal and solids; microbiology; and technology optimization. Moreover, the fate of trace metals, and the chemical speciation and transport of trace metals in environments—often agricultural lands receiving discharge waters from anaerobic digestion processes—simultaneously represents challenges for environmental protection and opportunities to close process loops in anaerobic digestion.

Keywords

Metal speciation Trace metal microbiology Bioavailability Anaerobic digestion Biogas Mathematical modeling 

References

  1. 1.
    Appels L, Lauwers J, Degrve J, Helsen L, Lievens B, Willems K, Van Impe J, Dewil R (2011) Anaerobic digestion in global bio-energy production: Potential and research challenges. Renew Sustain Energy Rev 15(9):4295–4301CrossRefGoogle Scholar
  2. 2.
    Lettinga G (2005) The anaerobic treatment approach towards a more sustainable and robust environmental protection, p 1–11Google Scholar
  3. 3.
    Verstraete W, Van de Caveye P, Diamantis V (2009) Maximum use of resources present in domestic “used water”. Bioresour Technol 100(23):5537–5545CrossRefGoogle Scholar
  4. 4.
    Zeeman G, Kujawa K, de Mes T, Hernandez L, de Graaff M, Abu-Ghunmi L, Mels A, Meulman B, Temmink H, Buisman C, van Lier J, Lettinga G (2008) Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste(water), p 1207–1212Google Scholar
  5. 5.
    Nichols CE (2004) Overview of anaerobic digestion technologies in Europe. BioCycle, 2004. 45(1):47–48 + 50–53Google Scholar
  6. 6.
    Cameron I (2007) Biogas market comes on strong. Diesel Gas Turbine Worldwide 39(5):10–13Google Scholar
  7. 7.
    Chong S, Sen TK, Kayaalp A, Ang HM (2012) The performance enhancements of upflow anaerobic sludge blanket (UASB) reactors for domestic sludge treatment—a State-of-the-art review. Water Res 46(11):3434–3470CrossRefGoogle Scholar
  8. 8.
    Chanakya HN, Malayil S (2012) Anaerobic digestion for bioenergy from agro-residues and other solid wastes—An overview of science, technology and sustainability. J Indian Inst Sci 92(1):111–143Google Scholar
  9. 9.
    Zandvoort MM, van Hullebusch ED, Fermoso FG, Lens P (2006) Trace metals in anaerobic granular sludge reactors: Bioavailability and dosing strategies. Eng Life Sci 6(3):293–301CrossRefGoogle Scholar
  10. 10.
    Glass JB, Orphan VJ (2012) Trace metal requirements for microbial enzymes involved in the production and consumption of methane and nitrous oxide. Frontiers in Microbiology, 3Google Scholar
  11. 11.
    Worm P, Fermoso FG, Lens PNL, Plugge CM (2009) Decreased activity of a propionate degrading community in a UASB reactor fed with synthetic medium without molybdenum, tungsten and selenium. Enzyme Microb Technol 45(2):139–145CrossRefGoogle Scholar
  12. 12.
    Zandvoort MH, van Hullebusch ED, Gieteling J, Lens PNL (2006) Granular sludge in full-scale anaerobic bioreactors: Trace element content and deficiencies. Enzyme Microb Technol 39(2):337–346CrossRefGoogle Scholar
  13. 13.
    Demirel B, Scherer P (2011) Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass Bioenergy 35(3):992–998CrossRefGoogle Scholar
  14. 14.
    Facchin V, Cavinato C, Pavan P, Bolzonella D (2013) Batch and continuous mesophilic anaerobic digestion of food waste: Effect of trace elements supplementation. Chem Eng Trans 32:457–462Google Scholar
  15. 15.
    Banks CJ, Zhang Y, Jiang Y, Heaven S (2012) Trace element requirements for stable food waste digestion at elevated ammonia concentrations. Bioresour Technol 104:127–135CrossRefGoogle Scholar
  16. 16.
    van Hullebusch ED, Zandvoort MH, Lens PNL (2003) Metal immobilisation by biofilms: Mechanisms and analytical tools. Rev Environ Sci Biotechnol 2(1):9–33CrossRefGoogle Scholar
  17. 17.
    Möller K, Müller T (2012) Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng Life Sci 12(3):242–257CrossRefGoogle Scholar
  18. 18.
    Yekta SS, Svensson BH, Björn A, Skyllberg U (2014) Thermodynamic modeling of iron and trace metal solubility and specia-tion under sulfidic and ferruginous conditions in full scale continuous stirred tank biogas reactors. Appl Geochem (In press)Google Scholar
  19. 19.
    Jansen S (2004) Speciation and bioavailability of cobalt and nickel in anaerobic wastewater treatment. In: Leerstoelgroep Fysische Chemie en Kolloidkunde. 2004, Wageningen UniversityGoogle Scholar
  20. 20.
    Gustavsson J, Yekta SS, Sundberg C, Karlsson A, Ejlertsson J, Skyllberg U, Svensson BH (2013) Bioavailability of cobalt and nickel during anaerobic digestion of sulfur-rich stillage for biogas formation. Appl Energy 112:473–477Google Scholar
  21. 21.
    Zandvoort MH, van Hullebusch ED, Gieteling J, Lettinga G, Lens PNL (2005) Effect of sulfur source on the performance and metal retention of methanol-fed UASB reactors. Biotechnol Prog 21(3):839–850CrossRefGoogle Scholar
  22. 22.
    Yekta SS, Lindmark A, Skyllberg U, Danielsson T, Svensson BH (2014) Importance of reduced sulfur for the equilibrium chemistry and kinetics of Fe(II), Co(II) and Ni(II) supplemented to semi-continuous stirred tank biogas reactors fed with stillage. J Hazard Mater 269:83–88Google Scholar
  23. 23.
    Kenney JPL, Fein JB (2011) Cell wall reactivity of acidophilic and alkaliphilic bacteria determined by potentiometric titrations and cd adsorption experiments. Environ Sci Technol 45(10):4446–4452CrossRefGoogle Scholar
  24. 24.
    d’Abzac P, Bordas F, van Hullebusch ED, Lens PNL, Guibaud G (2010) Effects of extraction procedures on metal binding properties of extracellular polymeric substances (EPS) from anaerobic granular sludges. Colloids Surf B 80(2):161–168CrossRefGoogle Scholar
  25. 25.
    Aquino SF, Stuckey DC (2007) Bioavailability and toxicity of metal nutrients during anaerobic digestion. J Environ Eng 133(1):28–35CrossRefGoogle Scholar
  26. 26.
    Gonzalez-Gil G, Jansen S, Zandvoort M, van Leeuwen HP (2003) Effect of yeast extract on speciation and bioavailability of nickel and cobalt in anaerobic bioreactors. Biotechnol Bioeng 82(2):134–142CrossRefGoogle Scholar
  27. 27.
    Bartacek J, Fermoso FG, Baldo-Urrutia AM, van Hullebusch ED, Lens PNL (2008) Cobalt toxicity in anaerobic granular sludge: Influence of chemical speciation. J Ind Microbiol Biotechnol 35(11):1465–1474CrossRefGoogle Scholar
  28. 28.
    Fermoso FG, Bartacek J, Chung LC, Lens P (2008) Supplementation of cobalt to UASB reactors by pulse dosing: CoCl2 versus CoEDTA2- pulses. Biochem Eng J 42(2):111–119CrossRefGoogle Scholar
  29. 29.
    d’Abzac P, Bordas F, Joussein E, van Hullebusch ED, Lens PNL, Guibaud G (2013) Metal binding properties of extracellular polymeric substances extracted from anaerobic granular sludges. Environ Sci Pollut Res 20(7):4509–4519CrossRefGoogle Scholar
  30. 30.
    Yekta SS, Gustavsson J, Svensson BH, Skyllberg U (2012) Sulfur K-edge XANES and acid volatile sulfide analyses of changes in chemical speciation of S and Fe during sequential extraction of trace metals in anoxic sludge from biogas reactors. Talanta 89:470–477Google Scholar
  31. 31.
    Li X, Dai X, Takahashi J, Li N, Jin J, Dai L, Dong B (2014) New insight into chemical changes of dissolved organic matter during anaerobic digestion of dewatered sewage sludge using EEM-PARAFAC and two-dimensional FTIR correlation spectroscopy. Bioresour Technol 159:412–420CrossRefGoogle Scholar
  32. 32.
    Van der Veen A, Fermoso FG, Lens P (2007) Bonding form analysis of metals and sulfur fractionation in methanol-grown anaerobic granular sludge engineering in life. Science 7(5):480–489Google Scholar
  33. 33.
    van Hullebusch ED, Rossano S, Farges F, Lenz M, Labanowski J, Lagarde P, Flank A-M, Lens PNL (2009) Sulfur K-edge XANES spectroscopy as a tool for understanding sulfur chemical state in anaerobic granular biofilms. In: 14th international conference on X-ray absorption fine structure (XAFS14), Camerino, ItalyGoogle Scholar
  34. 34.
    Pinheiro JP, Galceran J, Van Leeuwen HP (2004) Metal speciation dynamics and bioavailability: bulk depletion effects. Environ Sci Technol 38(8):2397–2405CrossRefGoogle Scholar
  35. 35.
    Temminghoff EJM, Plette ACC, Van Eck R, Van Riemsdijk WH (2000) Determination of the chemical speciation of trace metals in aqueous systems by the Wageningen Donnan membrane technique. Anal Chim Acta 417(2):149–157CrossRefGoogle Scholar
  36. 36.
    Davison W, Zhang H (1994) In situ speciation measurements of trace components in natural waters using thin-film gels. Nature 367(6463):546CrossRefGoogle Scholar
  37. 37.
    Feng XM, Karlsson A, Svensson BH, Bertilsson S (2010) Impact of trace element addition on biogas production from food industrial waste—Linking process to microbial communities. FEMS Microbiol Ecol 74(1):226–240CrossRefGoogle Scholar
  38. 38.
    Rittmann BE, Krajmalnik-Brown R, Halden RU (2008) Pre-genomic, genomic and post-genomic study of microbial communities involved in bioenergy. Nat Rev Microbiol 6(8):604–612CrossRefGoogle Scholar
  39. 39.
    Tomei MC, Braguglia CM, Cento G, Mininni G (2009) Modeling of Anaerobic digestion of sludge. Crit Rev Environ Sci Technol 39(12):1003–1051CrossRefGoogle Scholar
  40. 40.
    Fermoso FG, Collins G, Bartacek J, O’Flaherty V, Lens P (2008) Acidification of methanol-fed anaerobic granular sludge bioreactors by cobalt deprivation: induction and microbial community dynamics. Biotechnol Bioeng 99(1):49–58CrossRefGoogle Scholar
  41. 41.
    Fermoso FG, Collins G, Bartacek J, Lens PNL (2008) Zinc deprivation of methanol fed anaerobic granular sludge bioreactors. J Ind Microbiol Biotechnol 35(6):543–557CrossRefGoogle Scholar
  42. 42.
    Verstraete W, Wittebolle L, Heylen K, Vanparys B, de Vos P, van de Wiele T, Boon N (2007) Microbial resource management: the road to go for environmental biotechnology. Eng Life Sci 7(2):117–126CrossRefGoogle Scholar
  43. 43.
    Kazakov AE, Rajeev L, Luning EG, Zane GM, Siddartha K, Rodionov DA, Dubchak I, Arkin AP, Wall JD, Mukhopadhyay A, Novichkov PS (2013) New family of tungstate-responsive transcriptional regulators in sulfate-reducing bacteria. J Bacteriol 195(19):4466–4475CrossRefGoogle Scholar
  44. 44.
    Siggins A, Gunnigle E, Abram F (2012) Exploring mixed microbial community functioning: recent advances in metaproteomics. FEMS Microbiol Ecol 80(2):265–280CrossRefGoogle Scholar
  45. 45.
    VanGuilder HD, Vrana KE, Freeman WM (2008) Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 44(5):619–626CrossRefGoogle Scholar
  46. 46.
    Carrigg C, Rice O, Kavanagh S, Collins G, O’Flaherty V (2007) DNA extraction method affects microbial community profiles from soils and sediment. Appl Microbiol Biotechnol 77(4):955–964CrossRefGoogle Scholar
  47. 47.
    Smith CJ, Osborn AM (2009) Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol 67(1):6–20CrossRefGoogle Scholar
  48. 48.
    Myint MS, Johnson YJ, Tablante NL, Heckert RA (2006) The effect of pre-enrichment protocol on the sensitivity and specificity of PCR for detection of naturally contaminated Salmonella in raw poultry compared to conventional culture. Food Microbiol 23(6):599–604CrossRefGoogle Scholar
  49. 49.
    Banfield JF, Barker WW, Welch SA, Taunton A (1999) Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Natl Acad Sci USA 96(7):3404–3411CrossRefGoogle Scholar
  50. 50.
    Krewulak KD, Vogel HJ (2008) Structural biology of bacterial iron uptake. Biochim Biophys Acta Biomembr 1778(9):1781–1804CrossRefGoogle Scholar
  51. 51.
    Saito MA, Moffett JW, Chisholm SW, Waterbury JB (2002) Cobalt limitation and uptake in Prochlorococcus. J Limnol Oceanogr 47(6):1629–1636Google Scholar
  52. 52.
    Waldron KJ, Robinson NJ (2009) How do bacterial cells ensure that metalloproteins get the correct metal? Nat Rev Microbiol 7(1):25–35CrossRefGoogle Scholar
  53. 53.
    Rodrigue A, Effantin G, Mandrand-Berthelot MA (2005) Identification of rcnA (yohM), a nickel and cobalt resistance gene in Escherichia coli. J Bacteriol 187(8):2912–2916CrossRefGoogle Scholar
  54. 54.
    Fermoso FG, Bartacek J, Manzano R, van Leeuwen HP, Lens PN (2010) Dosing of anaerobic granular sludge bioreactors with cobalt: impact of cobalt retention on methanogenic activity. Bioresour Technol 101(24):9429–9437CrossRefGoogle Scholar
  55. 55.
    Ishaq F, Bridgeman J, Carliell-Marquet CM (2013) Site energy performance as an indicator for trace element deficiency in full-scale digesters. In: 13th world congress on anaerobic digestion (IWA specialist conference). Santiago de Compostela, SpainGoogle Scholar
  56. 56.
    Fermoso FG, Bartacek J, Jansen S, Lens PN (2009) Metal supplementation to UASB bioreactors: from cell-metal interactions to full-scale application. Sci Total Environ 407(12):3652–3667CrossRefGoogle Scholar
  57. 57.
    Jansen S, Gonzalez-Gil G, van Leeuwen HP (2007) The impact of Co and Ni speciation on methanogenesis in sulfidic media - Biouptake versus metal dissolution. Enzyme Microb Technol 40(4):823–830CrossRefGoogle Scholar
  58. 58.
    Nges IA, Björnsson L (2012) High methane yields and stable operation during anaerobic digestion of nutrient-supplemented energy crop mixtures. Biomass Bioenergy 47:62–70CrossRefGoogle Scholar
  59. 59.
    Nges IA, Björn A, Björnsson L (2012) Stable operation during pilot-scale anaerobic digestion of nutrient-supplemented maize/sugar beet silage. Bioresour Technol 118:445–454CrossRefGoogle Scholar
  60. 60.
    Pobeheim H, Munk B, Lindorfer H, Guebitz GM (2011) Impact of nickel and cobalt on biogas production and process stability during semi-continuous anaerobic fermentation of a model substrate for maize silage. Water Res 45(2):781–787CrossRefGoogle Scholar
  61. 61.
    Lindorfer H, Ramhold D, Frauz B (2012) Nutrient and trace element supply in anaerobic digestion plants and effect of trace element application. Water Sci Technol 66(9):1923–1929CrossRefGoogle Scholar
  62. 62.
    Hinken L, Urban I, Haun E, Weichgrebe D, Rosenwinkel KH (2008) The valuation of malnutrition in the mono-digestion of maize silage by anaerobic batch tests. Water Sci Technol 58:1453–1459Google Scholar
  63. 63.
    Carliell-Marquet C, Smith J, Oikonomidis I, Wheatley A (2010) Inorganic profiles of chemical phosphorus removal sludge. Proc Inst Civil Eng Water Manag 163(2):65–77CrossRefGoogle Scholar
  64. 64.
    Holmes J (1999) Fate of incorporated metals during mackinawite oxidation in sea water. Appl Geochem 14(3):277–281CrossRefGoogle Scholar
  65. 65.
    Mayer TD, Jarrell WM (2000) Phosphorus sorption during iron(II) oxidation in the presence of dissolved silica. Water Res 34(16):3949–3956CrossRefGoogle Scholar
  66. 66.
    Simpson SL, Apte SG, Batley GE (2000) Effect of short-term resuspension events on the oxidation of cadmium, lead, and zinc sulfide phases in anoxic estuarine sediments. Environ Sci Technol 34(21):4533–4537CrossRefGoogle Scholar
  67. 67.
    Xiang L, Chan LC, Wong JWC (2000) Removal of heavy metals from anaerobically digested sewage sludge by isolated indigenous iron-oxidizing bacteria. Chemosphere 41(1–2):283–287CrossRefGoogle Scholar
  68. 68.
    Vink JPM, Meeussen JCL (2007) BIOCHEM-ORCHESTRA: A tool for evaluating chemical speciation and ecotoxicological impacts of heavy metals on river flood plain systems. Environ Pollut 148(3):833–841CrossRefGoogle Scholar
  69. 69.
    Christensen JB, Christensen TH (1999) Complexation of Cd, Ni, and Zn by DOC in polluted groundwater: a comparison of approaches using resin exchange, aquifer material sorption, and computer speciation models (WHAM and MINTEQA2). Environ Sci Technol 33(21):3857–3863CrossRefGoogle Scholar
  70. 70.
    Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC (2001) Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ Toxicol Chem 20(10):2383–2396CrossRefGoogle Scholar
  71. 71.
    Lamers LPM, Tomassen HBM, Roelofs JGM (1998) Sulfate-induced eutrophication and phytotoxicity in freshwater wetlands. Environ Sci Technol 32(2):199–205CrossRefGoogle Scholar
  72. 72.
    Siegrist H, Brunner I, Koch G, Phan LC, Van Le C (1999) Reduction of biomass decay rate under anoxic and anaerobic conditions. Water Sci Technol 39:129–137Google Scholar
  73. 73.
    Vink JPM, Harmsen J, Rijnaarts H (2010) Delayed immobilization of heavy metals in soils and sediments under reducing and anaerobic conditions; consequences for flooding and storage. J Soils Sediments 10(8):1633–1645CrossRefGoogle Scholar
  74. 74.
    Ankley GT, Di Toro DM, Hansen DJ, Berry WJ (1996) Technical basis and proposal for deriving sediment quality criteria for metals. Environ Toxicol Chem 15(12):2056–2066CrossRefGoogle Scholar
  75. 75.
    Bergman HL, Dorward-King EJ (1997) Reassessment of metals criteria for aquatic life protection: priorities for research and implementation. In: Proceedings of the pellston workshop on reassessment of metals criteria for aquatic life protection, pp 10–14 February 1996, Pensacola, Florida, SETAC PressGoogle Scholar
  76. 76.
    Renner R (1997) Rethinking water quality standards for metals toxicity. Environ Sci Technol 31(10):465A–468ACrossRefGoogle Scholar
  77. 77.
    EU (2008) Directive 2008/105/EC of the European Parliament and of the Council of 16 December 2008 on environmental quality standards in the field of water policy, amending and subsequently repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and amending Directive 2000/60/EC of the European Parliament and of the Council, p 14Google Scholar
  78. 78.
    Pagenkopf GK (1983) Gill surface interaction model for trace-metal toxicity to fishes: Role of complexation, pM, and water hardness. Environ Sci Technol 17(6):342–347CrossRefGoogle Scholar
  79. 79.
    Pagenkopf GK, Russo RC, Thurston RV (1974) Effect of complexation on toxicity of copper to fishes. J Fish Res Board Canada 31(4):462–465CrossRefGoogle Scholar
  80. 80.
    Hollis L, Burnison K, Playle RC (1996) Does the age of metal-dissolved organic carbon complexes influence binding of metals to fish gills? Aquat Toxicol 35(3–4):253–264CrossRefGoogle Scholar
  81. 81.
    Janes N, Playle RC (1995) Modeling silver binding to gills of rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 14(11):1847–1858CrossRefGoogle Scholar
  82. 82.
    Playle RC (1998) Modelling metal interactions at fish gills. Sci Total Environ 219(2–3):147–163CrossRefGoogle Scholar
  83. 83.
    Richards JG, Playle RC (1998) Cobalt binding to gills of rainbow trout (Oncorhynchus mykiss): An equilibrium model. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 119(2):185–197CrossRefGoogle Scholar
  84. 84.
    Wood CM, Playle RC, Hogstrand C (1999) Physiology and modeling of mechanisms of silver uptake and toxicity in fish. Environ Toxicol Chem 18(1):71–83CrossRefGoogle Scholar
  85. 85.
    Morel F (1983) Principles of aquatic chemistry. Wiley, New YorkGoogle Scholar
  86. 86.
    Campbell PG (1995) In Interactions between trace metals and aquatic organ-isms: A critique of the free-ion activity model, in Metal Speciation and Bioavailability in AquaticSystems. In: Tessier A, Turner D (eds), John Wiley: New York, NY, USA. p. 45–102Google Scholar
  87. 87.
    Meyer JS (1999) A mechanistic explanation for the In(LC50) vs In(hardness) adjustment equation for metals. Environ Sci Technol 33(6):908–912CrossRefGoogle Scholar
  88. 88.
    Paquin PR, di Toro DM, Santore RC, Trivedi D, Wu KB (1999) A Biotic Ligand Model of the Acute Toxicity of Metals: III. Application to Fish and Daphnia Exposure to Silver. In: Integrated Approach to Assessing the Bioavailability and Toxicity of Metals in Surface Waters and Sediments. U.E. EPA-822-E-99-001, Editor. 1999: Washington, DC, p 3-59–3-102Google Scholar
  89. 89.
    Vink JPM (2009) The origin of speciation: Trace metal kinetics over natural water/sediment interfaces and the consequences for bioaccumulation. Environ Pollut 157(2):519–527CrossRefGoogle Scholar
  90. 90.
    Vink JPM (2002) Measurement of heavy metal speciation over redox gradients in natural water-sediment interfaces and implications for uptake by benthic organisms. Environ Sci Technol 36(23):5130–5138CrossRefGoogle Scholar
  91. 91.
    Niyogi S, Kent R, Wood CM (2008) Effects of water chemistry variables on gill binding and acute toxicity of cadmium in rainbow trout (Oncorhynchus mykiss): A biotic ligand model (BLM) approach. Comp Biochem Physiol C Toxicol Pharmacol 148(4):305–314CrossRefGoogle Scholar
  92. 92.
    Vijver MG, De Koning A, Peijnenburg WJGM (2008) Uncertainty of water type-specific hazardous copper concentrations derived with biotic ligand models. Environ Toxicol Chem 27(11):2311–2319CrossRefGoogle Scholar
  93. 93.
    Verschoor AJ, Vink JPM, De Snoo GR, Vijver MG (2011) Spatial and temporal variation of watertype-specific no-effect concentrations and risks of Cu, Ni, and Zn. Environ Sci Technol 45(14):6049–6056CrossRefGoogle Scholar
  94. 94.
    Hill D, Barth C (1977) A dynamic model for simulation of animal waste digestion. J (Water Pollut Control Fed) 49:2129–2143Google Scholar
  95. 95.
    Kalyuzhnyi S, Davlyatshina M (1997) Batch anaerobic digestion of glucose and its mathematical modeling. I. Kinetic investigations. Bioresour Technol 59(1):73–80CrossRefGoogle Scholar
  96. 96.
    Mosey F (1983) Mathematical modelling of the anaerobic digestion process: regulatory mechanisms for the formation of short-chain volatile acids from glucose. Water Sci Technol 15(8–9):209–232Google Scholar
  97. 97.
    Costello D, Greenfield P, Lee PL (1991) Dynamic modelling of a single-stage high-rate anaerobic reactor—I. Model derivation. Water Res 25(7):847–858CrossRefGoogle Scholar
  98. 98.
    Batstone D, Keller J, Newell R, Newland M (2000) Modelling anaerobic degradation of complex wastewater. I: model development. Bioresour Technol 75(1):67–74CrossRefGoogle Scholar
  99. 99.
    Angelidaki I, Ellegaard L, Ahring BK (1993) A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: focusing on ammonia inhibition. Biotechnol Bioeng 42(2):159–166CrossRefGoogle Scholar
  100. 100.
    Vavilin V, Vasiliev V, Ponomarev A, Rytow S (1994) Simulation model ‘methane’as a tool for effective biogas production during anaerobic conversion of complex organic matter. Bioresour Technol 48(1):1–8CrossRefGoogle Scholar
  101. 101.
    Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WT, Siegrist H, Vavilin VA (2002) The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci Technol 45(10):65–73Google Scholar
  102. 102.
    Fuentes M, Scenna NJ, Aguirre PA, Mussati MC (2008) Application of two anaerobic digestion models to biofilm systems. Biochem Eng J 38(2):259–269CrossRefGoogle Scholar
  103. 103.
    Fedorovich V, Lens P, Kalyuzhnyi S (2003) Extension of anaerobic digestion model no. 1 with processes of sulfate reduction. Appl Biochem Biotechnol Part A Enzyme Eng Biotechnol 109(1–3):33–45Google Scholar
  104. 104.
    Batstone DJ, Keller J (2003) Industrial applications of the IWA anaerobic digestion model No. 1 (ADM1). Water Sci Technol 47:199–206Google Scholar
  105. 105.
    Blumensaat F, Keller J (2005) Modelling of two-stage anaerobic digestion using the IWA Anaerobic Digestion Model No. 1 (ADM1). Water Res 39(1):171–183CrossRefGoogle Scholar
  106. 106.
    Lübken M, Wichern M, Schlattmann M, Gronauer A, Horn H (2007) Modelling the energy balance of an anaerobic digester fed with cattle manure and renewable energy crops. Water Res 41(18):4085–4096CrossRefGoogle Scholar
  107. 107.
    Esposito G, Frunzo L, Panico A, d’Antonio G (2008) Mathematical modelling of disintegration-limited co-digestion of OFMSW and sewage sludge. Water Sci Technol 58(7):1513–1519CrossRefGoogle Scholar
  108. 108.
    García-Gen S, Sousbie P, Rangaraj G, Lema JM, Rodríguez J, Steyer JP, Torrijos M (2015) Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes. Waste Manag 35:96–104CrossRefGoogle Scholar
  109. 109.
    Esposito G, Frunzo L, Panico A, Pirozzi F (2011) Modelling the effect of the OLR and OFMSW particle size on the performances of an anaerobic co-digestion reactor. Process Biochem 46(2):557–565CrossRefGoogle Scholar
  110. 110.
    Barrera EL, Spanjers H, Solon K, Amerlinck Y, Nopens I, Dewulf J (2015) Modeling the anaerobic digestion of cane-molasses vinasse: extension of the Anaerobic Digestion Model No. 1 (ADM1) with sulfate reduction for a very high strength and sulfate rich wastewater. Water Res 71:42–54CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • F. G. Fermoso
    • 1
  • E. D. van Hullebusch
    • 2
  • G. Guibaud
    • 3
  • G. Collins
    • 4
    • 5
  • B. H. Svensson
    • 6
  • C. Carliell-Marquet
    • 7
  • J. P. M. Vink
    • 8
  • G. Esposito
    • 9
  • L. Frunzo
    • 10
  1. 1.Instituto de La GrasaC.S.I.C., Campus Pablo de OlavideSevilleSpain
  2. 2.Université Paris-EstLaboratoire Géomatériaux et Environnement (EA 4508)Marne-La-ValléeFrance
  3. 3.Faculté des Sciences et TechniquesUniversity of Limoges Groupement de Recherche, Eau, Sol, EnvironnementLimogesFrance
  4. 4.School of Natural Sciences, National University of Ireland GalwayMicrobial Ecophysiology and EcoEngineering LaboratoryGalwayIreland
  5. 5.School of EngineeringUniversity of GlasgowGlasgowUK
  6. 6.Department Thematic Studies Water and EnvironmentLinköping UniversityLinköpingSweden
  7. 7.School of Civil Engineering, College of Engineering and Physical SciencesUniversity of BirminghamBirminghamUK
  8. 8.Deltares FoundationPrincetonlaan 6UtrechtThe Netherlands
  9. 9.Department of Civil and Mechanical EngineeringUniversity of Cassino and the Southern LazioCassinoItaly
  10. 10.Department of Mathematics and Applications Renato CaccioppoliUniversity of Naples Federico IINaplesItaly

Personalised recommendations