Skip to main content

Music Representations

  • 8155 Accesses

Abstract

Music can be represented in many different ways and formats. For example, a composer may write down a composition in the form of a musical score. In a score, musical symbols are used to visually encode notes and how these notes are to be played by a musician.

Keywords

  • Symbolic Representation
  • Music Notation
  • Music Representation
  • Musical Tone
  • Pitch Class

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-21945-5_1
  • Chapter length: 37 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-21945-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. BABBITT, The use of computers in musicological research, Perspectives of New Music, 3 (1965), pp. 74–83.

    Google Scholar 

  2. E. P. BUGGE, K. L. JUNCHER, B. S. MATHIASEN, AND J. G. SIMONSEN, Using sequence alignment and voting to improve optical music recognition from multiple recognizers, in Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Miami, Florida, USA, 2011, pp. 405–410.

    Google Scholar 

  3. D. BYRD, W. GUERIN, M. SCHINDELE, AND I. KNOPKE, OMR evaluation and prospects for improved OMR via multiple recognizers, technical report, Indiana University, Bloomington, Indiana, USA, 2010.

    Google Scholar 

  4. D. BYRD AND M. SCHINDELE, Prospects for improving OMR with multiple recognizers, in Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Victoria, Canada, 2006, pp. 41–46.

    Google Scholar 

  5. H. FASTL AND E. ZWICKER, Psychoacoustics, Facts and Models, Springer, 3rd ed., 2007.

    Google Scholar 

  6. H. FLETCHER AND W. A. MUNSON, Loudness, its definition, measurement and calculation, Journal of the Acoustic Society of America, 5 (1933), pp. 82–108.

    Google Scholar 

  7. N. H. FLETCHER AND T. D. ROSSING, The Physics of Musical Instruments, Springer-Verlag, 1991.

    Google Scholar 

  8. C. FREMEREY, Automatic Organization of Digital Music Documents – Sheet Music and Audio, PhD thesis, University of Bonn, 2010.

    Google Scholar 

  9. C. FREMEREY, M. MÜLLER, AND M. CLAUSEN, Towards bridging the gap between sheet music and audio, in Knowledge Representation for Intelligent Music Processing, E. Selfridge-Field, F. Wiering, and G. A. Wiggins, eds., Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2009, Leibniz-Zentrum für Informatik.

    Google Scholar 

  10. M. GOOD, MusicXML for notation and analysis, Computing in Musicology, 12 (2001), pp. 113–124.

    Google Scholar 

  11. ______, Lessons from the adoption of MusicXML as an interchange standard, in Proceedings of XML, 2006.

    Google Scholar 

  12. A. HANKINSON, P. ROLAND, AND I. FUJINAGA, The music encoding initiative as a document-encoding framework, in Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Miami, Florida, USA, 2011, pp. 293–298.

    Google Scholar 

  13. D. M. HUBER, The MIDI manual, Focal Press, 3rd ed., 2006.

    Google Scholar 

  14. D. B. HURON, Sweet anticipation: Music and the psychology of expectation, The MIT Press, 2006.

    Google Scholar 

  15. M. R. JONES, R. R. FAY, AND A. N. POPPER, eds., Music Perception (Springer Handbook of Auditory Research), Springer, 2010.

    Google Scholar 

  16. A. P. KLAPURI AND M. DAVY, eds., Signal Processing Methods for Music Transcription, Springer, New York, 2006.

    Google Scholar 

  17. G. MAZZOLA, The topos of music, Birkh¨auser, 2002.

    Google Scholar 

  18. B. C. MOORE, An Introduction to the Psychology of Hearing, Emerald/Brill, 6th ed., 2012.

    Google Scholar 

  19. M. MÜLLER, Information Retrieval for Music and Motion, Springer Verlag, 2007.

    Google Scholar 

  20. M. MÜLLER AND A. KLAPURI, Music Signal Processing, vol. 4 of Library in Signal Processing, Academic Press, 2013, ch. 27, pp. 713–756.

    Google Scholar 

  21. H.-W. NIENHUYS AND J. NIEUWENHUIZEN, Lilypond, a system for automated music engraving, in Proceedings of the XIV Colloquium on Musical Informatics, Firenze, Italy, 2003, pp. 664–665.

    Google Scholar 

  22. D. H. PRUSLIN, Automatic recognition of sheet music, PhD thesis, Massachusetts Institute of Technology, 1966.

    Google Scholar 

  23. L. PUGIN, J. KEPPER, P. ROLAND, M. HARTWIG, AND A. HANKINSON, Separating presentation and content in MEI, in Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Porto, Portugal, 2012, pp. 505–510.

    Google Scholar 

  24. C. RAPHAEL AND J. WANG, New approaches to optical music recognition, in Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), Miami, Florida, USA, 2011, pp. 305–310.

    Google Scholar 

  25. C. ROADS, The computer music tutorial, The MIT Press, 1996.

    Google Scholar 

  26. C. S. SAPP, Online database of scores in the humdrum file format, in Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), London, UK, 2005, pp. 664–665.

    Google Scholar 

  27. E. SELFRIDGE-FIELD, ed., Beyond MIDI: the handbook of musical codes, MIT Press, Cambridge, Massachusetts, USA, 1997.

    Google Scholar 

  28. W. A. SETHARES, Tuning, Timbre, Spectrum, Scale, Springer, London, 1998.

    Google Scholar 

  29. R. N. SHEPARD, Circularity in judgments of relative pitch, Journal of the Acoustic Society of America, 36 (1964), pp. 2346–2353.

    Google Scholar 

  30. V. THOMAS, Music Synchronization, Audio Matching, Pattern Detection, and User Interfaces for a Digital Music Library System, PhD thesis, University of Bonn, 2013.

    Google Scholar 

  31. V. THOMAS, C. FREMEREY, M. MÜLLER, AND M. CLAUSEN, Linking sheet music and audio - challenges and new approaches, in Multimodal Music Processing, M. Müller, M. Goto, and M. Schedl, eds., vol. 3 of Dagstuhl Follow-Ups, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2012, pp. 1–22.

    Google Scholar 

  32. G. WIGGINS, D. MÜLLENSIEFEN, AND M. PEARCE, On the non-existence of music: Why music theory is a figment of the imagination, Musicae Scientiae, Discussion Forum, 5 (2010), pp. 231–255.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meinard Müller .

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Müller, M. (2015). Music Representations. In: Fundamentals of Music Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-21945-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21945-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21944-8

  • Online ISBN: 978-3-319-21945-5

  • eBook Packages: Computer ScienceComputer Science (R0)