Skip to main content

Impact of Inflammation and Innate Immunity Response in Obesity Mediated Diabetes

  • Chapter

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Impaired glucose metabolism and persistent hyperglycemia are known to cause diabetes complications. Diabetic hyperglycemia has been correlated with complications such as retinopathy, nephropathy, neuropathy, and increased the risk of myocardial infarction, stroke, premature peripheral arterial disease, atherosclerosis, and cardiomyopathy. Insulin resistance is the root cause of hyperglycemia, and insulin resistance is caused by obesity and tied to causative inflammatory factors. Many new pathways that impact this inflammation have been observed in the last decade. It is clear that obesity increases the likelihood of inflammation, alters the response of the adipose, and increases the risk of lipidemia and hyperglycemia. Hyperglycemia leads to oxidative stress which causes molecular damage. Adipose tissue under fatty acid stress is now implicated as a source of innate immunity signaling of inflammation. These stress factors caused by obesity correlate with a mild but chronic inflammatory state with activation of the innate immune system. This inflammatory state signals innate immune cells to mediate tissue and organ damage. Vascular dysfunction and altered cellular proliferation repair responses are observed. The pathways in innate immunity activation are herein reviewed and connections are made to both well-known diagnostic markers and to new markers. Immune mediated inflammation is common to all diabetic complications. Recent discoveries shown in the volume reveal a new level of complexity in the innate immune molecular role in diabetic disease. These multiple pathways allow a new understanding how diabetes complications progress. This chapter reviews the molecular pathways connecting hyperglycemia to obesity and inflammation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahima RS (2006) Adipose tissue as an endocrine organ. Obesity 14:242–249

    Article  Google Scholar 

  • Allen-Mersh TG (1976) Weber-Christian panniculitis and auto-immune disease: a case report. J Clin Pathol 29(2):144–149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Antonetti DA et al. JDRF Diabetic Retinopathy Center Group. Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabets. 2006;55(9):2401–2411

    Google Scholar 

  • Aroor AA et al (2013) The role of tissue renin-angiotensin-aldosterone system in the development of endothelial dysfunction and arterial stiffness (review). Front Endocrinol (Lausanne) 4:article 161, 7 pgs

    Google Scholar 

  • Ban CR, Twigg SM (2008) Fibrosis in diabetes complications: pathogenic mechanisms and circulating and urinary markers. Vasc Health Risk Manag 4(3):575–596. Review

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bashan N et al (2009) Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev 89:27–71

    Article  CAS  PubMed  Google Scholar 

  • Besler C (2011) Mechanisms underlying adverse effects of HDL on eNOS-activating pathways in patients with coronary artery disease. J Clin Invest 121(7):2693–2708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bierhaus A et al (2005) Understanding RAGE, the receptor for advanced glycation end products. J Mol Med (Berl) 83(11):876–886

    Article  CAS  Google Scholar 

  • Brady EM et al (2012) Investigating endothelial activation and oxidative stress in relation to glycaemic control in a multiethnic population. Exp Diabetes Res 2012:386041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bråkenhielm E et al (2004) Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc Natl Acad Sci U S A 101(8):2476–2481

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brooks-Worrell B, Palmer JP (2011) Is diabetes mellitus a continuous spectrum? Clin Chem 57(2):2158–2161

    Article  CAS  Google Scholar 

  • Calkin AC, Tontonoz P (2013) Transcriptional integration of metabolism by the nuclear sterol activated receptors LXR and FXR. Nat Rev Mol Cell Biol 13(4):213–224

    Google Scholar 

  • Calvo C, Ponsin G, Berthezene F (1988) Characterization of the non-enzymatic glycation of high density lipoprotein in diabetic patients. Diabete Metab 14(3):264–269

    CAS  PubMed  Google Scholar 

  • Campbell DJ (2000) Towards understanding the kallikrein-kinin system: insights from measurement of kinin peptides. Br J Med Biol Res 33:665–677

    Article  CAS  Google Scholar 

  • Campbell DJ (2001) The kallikrein-kinin system in humans. Clin Exp Pharmacol Physiol 28:1060–1065

    Article  CAS  PubMed  Google Scholar 

  • Ceriello A, Ihnat MA, Thorpe JE (2009) Clinical review 2: the “metabolic memory”: is more than just tight glucose control necessary to prevent diabetic complications? J Clin Endocrinol Metab 94(2):410–415

    Article  CAS  PubMed  Google Scholar 

  • Chiarugi P et al (2003) Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J Cell Biol 161:933–944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chmurzyńska A (2006) The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J Appl Genet 47(1):39–48

    Article  PubMed  Google Scholar 

  • Cianflone K, Maslowska M (1995) Differentiation-induced production of ASP in human adipocytes. Eur J Clin Invest 25(11):817–825

    Article  CAS  PubMed  Google Scholar 

  • Cianflone K et al (2004) Fasting acylation-stimulating protein is predictive of postprandial triglyceride clearance. J Lipid Res 45:124–131

    Article  CAS  PubMed  Google Scholar 

  • Cianflone K et al (2008) Acylation stimulating protein but not complement C3 associates with metabolic syndrome components in Chinese children and adolescents. Eur J Endocrinol 159(6):781–790

    Article  PubMed  CAS  Google Scholar 

  • Cochrane CG, Unanue ER, Dixon FJ (1965) A role of polymorphonuclear leukocyte and complement in nephrotoxic nephritis. J Exp Med 122:99–116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cocks T, Moffatt J (2000) Protease-activated receptors: sentries for inflammation. Trends Pharmacol Sci 21:103–108

    Article  CAS  PubMed  Google Scholar 

  • Coelho AM, Ossovskaya V, Bunnett NW (2003) Proteinase-activated receptor-2: physiological and pathophysiological roles. Curr Med Chem Cardiovasc Hematol Agents 1:61–72

    Article  CAS  PubMed  Google Scholar 

  • Cohen P et al (2002) Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science 297:240–243

    Article  CAS  PubMed  Google Scholar 

  • Collard CD et al (1999) Complement activation following oxidative stress. Mol Immunol 36:941–948

    Article  CAS  PubMed  Google Scholar 

  • Cottrell G (2002) Protease activated receptors: the role of cell surface proteolysis in signaling. Essays Biochem 38:169–183

    Article  CAS  PubMed  Google Scholar 

  • Curran CS, Bertics PJ (2011) Human eosinophils express RAGE, produce RAGE ligands, exhibit PKC-delta phosphorylation and enhanced viability in response to the RAGE ligand, S100B. Int Immunol 23(12):713–728

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • D’Souza D, Al-Sajeea D, Hawke TJ (2013) Diabetic myopathy: impact of diabetes mellitus on skeletal muscle progenitor cells. Front Physiol 4:Article 379, 7 pgs

    PubMed  Google Scholar 

  • de Jong AJ et al (2014) Fatty acids, lipid mediators, and T-cell function. Front Immunol 5:483

    PubMed Central  PubMed  Google Scholar 

  • Deng T et al (2013) Class II major histocompatibility complex plays an essential role in obesity-induced adipose inflammation. Cell Metab 17:411–422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    Article  CAS  PubMed  Google Scholar 

  • Dugani CD (2005) Glucose transporter 4: cycling, compartments and controversies (review). EMBO Rep 6(12):1137–1142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Espinoza-Jiménez A, Peón AN, Terrazas LI (2012) Alternatively activated macrophages in types 1 and 2 diabetes. Mediators Inflamm 2012:815953

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Faraj M et al (2008) Regulation of leptin, adiponectin and acylation-stimulating protein by hyperinsulinaemia and hyperglycaemia in vivo in healthy lean young men. Diabetes Metab 34(4 Pt 1):334–342

    Article  CAS  PubMed  Google Scholar 

  • Feener EP, Zhou Q, Fickweiler W (2013) Role of plasma kallikrein in diabetes and metabolism (review). Thromb Haemost 110(3):434–441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Forbes JM, Copper MS (2013) Mechanisms of diabetic complications. Physiol Rev 93:137–188

    Article  CAS  PubMed  Google Scholar 

  • Garlick RL, Bunn HF, Spiro RG (1988) Nonenzymatic glycation of basement membranes from human glomeruli and bovine sources. Effect of diabetes and age. Diabetes 37(8):1144–1150

    Article  CAS  PubMed  Google Scholar 

  • Goh SY, Cooper ME et al (2008) Clinical review: the role of advanced glycation end products in progression and complications of diabetes. J Clin Endocrinol Metab 93(4):1143–1152

    Article  CAS  PubMed  Google Scholar 

  • Goldfine AB et al (2011) Biomarkers in fasting serum to estimate glucose tolerance, insulin sensitivity, and insulin secretion. Clin Chem 57(2):326–337

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gordon P (2003) The clinical uses of leptin. Curr Opin Pharmacol 3:655–659

    Article  CAS  Google Scholar 

  • Grisham MB (2004) Reactive oxygen species in immune responses. Free Radic Biol Med 36:1479–1480

    Article  CAS  PubMed  Google Scholar 

  • Gumbs AA et al (2005) Changes in insulin resistance following bariatric surgery and the adipoinsular axis: role of caloric restriction and weight loss. Obes Surg 15:462–473

    Article  PubMed  Google Scholar 

  • Gutterman DD, Miura H, Liu Y (2005) Redox modulation of vascular tone: focus of potassium channel mechanisms of dilation. Arterioscler Thromb Vasc Biol 25:671–678

    Article  CAS  PubMed  Google Scholar 

  • Halperin J et al (2000) Molecular basis for a link between complement and the vascular complications of diabetes. Proc Natl Acad Sci U S A 97(10):5450–5455

    Article  PubMed Central  PubMed  Google Scholar 

  • Horakova DV et al (2011) Adipocyte fatty acid binding protein and C-reactive protein levels as indicators of insulin resistance development. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 155(4):355–359

    Article  CAS  PubMed  Google Scholar 

  • Hotta O, Yusa N, Ooyama M, Unno K, Furuta T, Taguma Y (1999) Detection of urinary macrophages expressing the CD16 molecule: a novel marker of acute inflammatory glomerular injury. Kidney Int 55:1927–1934

    Article  CAS  PubMed  Google Scholar 

  • Hou N et al (2008) Reactive oxygen species-mediated pancreatic β-cell death is regulated by interactions between stress activated protein kinases, p38 and c-Jun N-terminal kinase and mitogen-activated protein kinase phosphatases. Endocrinology 149:1654–1665

    Article  CAS  PubMed  Google Scholar 

  • Huang F, Horikoshi S, Kurusu A, Shibata T, Suzuki S, Funabiki K et al (2001) Urinary levels of interleukin-8 (IL-8) and disease activity in patients with IgA nephropathy. J Clin Lab Anal 15:30–34

    Article  PubMed  Google Scholar 

  • Jenkins AJ et al. DCCT/EDIC Research Group (2008) Cross-sectional associations of C-reactive protein with vascular risk factors and vascular complications in the DCCT/EDIC cohort. Diabetes Complications 22(3):153–163

    Google Scholar 

  • Johnson R et al (1988) The human neutrophils serine proteinases, elastase and cathespin G can mediate glomerular injury in vivo. J Exp Med 168:1169–1174

    Article  CAS  PubMed  Google Scholar 

  • Johnson AR, Milner JJ, Makowski L (2012) The inflammation highway: metabolism accelerates inflammatory traffic in obesity. Immunol Rev 249(1):218–238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kadowaki T (2005) Adiponectin and adiponectin receptors. Endocr Rev 26(3):439–451

    Article  CAS  PubMed  Google Scholar 

  • Kam CM, Hudig D, Powers JC (2000) Granzymes (lymphocyte serine proteases): characterization with natural and synthetic substrates and inhibitors. Biochim Biophys Acta 1477:307–323

    Article  CAS  PubMed  Google Scholar 

  • Kanauchi M, Nishioka H, Hashimoto T (2002) Oxidative DNA damage and tubulointerstitial injury in diabetic nephropathy. Nephron 91:327–329

    Article  CAS  PubMed  Google Scholar 

  • Kaneko H et al (2011) Human C-reactive protein exacerbates metabolic disorders in association with adipose tissue remodeling. Cardiovasc Res 91:546–555

    Article  CAS  PubMed  Google Scholar 

  • Kaplan A, Silverberg M, Dunn J, Ghebrehiwet B (1982) Interaction of the clotting, kinin forming, complement, and fibrinolytic pathways in inflammation. Ann N Y Acad Sci 389:25–38

    Article  CAS  PubMed  Google Scholar 

  • Kato H (2002) Regulation of functions of vascular wall cells by tissue factor pathway inhibitor basic and clinical aspects. Arterioscler Thromb Vasc Biol 22:539–548

    Article  CAS  PubMed  Google Scholar 

  • Knight JA (1997) Reactive oxygen species and the neurodegenerative disorders. Ann Clin Lab Sci 27:11–25

    CAS  PubMed  Google Scholar 

  • Kondo T et al (2013) Natural killer T cells in adipose tissue are activated in lean mice. Exp Anim 62(4):319–328

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kong P et al (2013) Thrombospondin-1 regulates adiposity and metabolic dysfunction in diet-induced obesity enhancing adipose inflammation and stimulating adipocyte proliferation. Am J Physiol Endocrinol Metab 305(3):E439–E450

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kono H, Kimura Y, Latz E (2014) Inflammasome activation in response to dead cells and their metabolites. Curr Opin Immunol 30:91–98

    Article  CAS  PubMed  Google Scholar 

  • Kubota N et al (2002) Disruption of adiponectin causes insulin resistance and neointimal formation. J Biol Chem 277(29):25863–25866

    Article  CAS  PubMed  Google Scholar 

  • Lee HC, Wie YH (2007) Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Exp Biol Med 232:592–606

    CAS  Google Scholar 

  • Lim SO et al (2008) Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology 135(6):2128–2140

    Article  CAS  PubMed  Google Scholar 

  • Ma K et al (2002) Increased β-oxidation but no insulin resistance or glucose intolerance in mice lacking adiponectin. J Biol Chem 277(38):34658–34661

    Article  CAS  PubMed  Google Scholar 

  • Madamanchi NR, Vendrov A, Runge MS (2005) Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 25:29–38

    CAS  PubMed  Google Scholar 

  • Mandard S et al (2006) The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J Biol Chem 281(2):934–944

    Article  CAS  PubMed  Google Scholar 

  • Mania-Pramanik J et al (2004) Elastase: a predictive marker of inflammation and/or infection. J Clin Lab Anal 18:153–158

    Article  CAS  PubMed  Google Scholar 

  • Masoodi M et al (2015) Lipid signaling in adipose tissue: connecting inflammation & metabolism. Biochim Biophys Acta 1851:503–518

    Article  CAS  PubMed  Google Scholar 

  • McNelis JC, Olefsky JM (2014) Macrophages, immunity, and metabolic disease. Immunity 41(1):36–48

    Article  CAS  PubMed  Google Scholar 

  • Meada N et al (2002) Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med 8(7):731–737

    Article  CAS  Google Scholar 

  • Miike S, McWilliam A, Kita H (2001) Trypsin induces activation and inflammatory mediator release from human eosinophils through protease-activated receptor-2. J Immunol 167:6615

    Article  CAS  PubMed  Google Scholar 

  • Minokoshi Y et al (2002) Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415:339–343

    Article  CAS  PubMed  Google Scholar 

  • Nakatani K, Takeshita S (1999) Vascular endothelial cell injury by activated neutrophil and treatment for the injury. Surg Trauma Immunol Response 8:112–114

    CAS  Google Scholar 

  • Nakatani K et al (2001) Inhibitory effect of serine protease inhibitors on neutrophil-mediated endothelial cell injury. J Leukoc Biol 69:241–247

    CAS  PubMed  Google Scholar 

  • Nathan DM et al (2014) The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care 37(1):9–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nawrocki AR et al (2006) Mice Lacking Adiponectin show decreased hepatic insulin sensitivity and reduced pesponsiveness to peroxisome proliferator-activated receptor agonists. J Biol Chem 281(5):2654–2660

    Article  CAS  PubMed  Google Scholar 

  • Neeper M (1992) Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 267(21):14998–15004

    CAS  PubMed  Google Scholar 

  • Nishizuka Y (1995) Protein kinase C and lipid signaling for sustained cellular responses. FASEB J 9(7):484–496

    CAS  PubMed  Google Scholar 

  • Nizet V, Johnson RS (2009) Inter-dependence of hypoxic and innate immune responses. Nat Rev Immunol 9:609–617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olefsky JM, Glass CK (2010) Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72:219–246

    Article  CAS  PubMed  Google Scholar 

  • Osuka K et al (2012) Adiponectin activates endothelial nitric oxide synthase through AMPK signaling after subarachnoid hemorrhage. Neurosci Lett 514(1):2–5

    Article  CAS  PubMed  Google Scholar 

  • Ouchi N et al (2000) Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-κB signaling through a cAMP-dependent pathway. Circulation 102:1296–1301

    Article  CAS  PubMed  Google Scholar 

  • Pacurari M et al (2014) The Renin-angiotensin-aldosterone system in vascular inflammation and remodeling international (review). J Inflamm 2014:Article ID 689360, 13 pgs

    Google Scholar 

  • Parrinello CM, Selvin E (2014) Beyond HbA1c and glucose: the role of nontraditional glycemic markers in diabetes diagnosis, prognosis, and management. Curr Diab Rep 14(11):548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Patel PS, Buras ED, Balasubramanyam A (2013) The role of the immune system in obesity and insulin resistance. J Obes 2013:Article ID 616193, 9 pgs

    Google Scholar 

  • Peake PW et al (2005) Response of the alternative complement pathway to an oral fat load in first-degree relatives of subjects with type II diabetes. Int J Obes (Lond) 29(4):429–435

    Article  CAS  Google Scholar 

  • Pendyala S et al (2009) Regulation of NADPH oxidase in vascular endothelium: the role of phospholipases, protein kinases, and cytoskeletal proteins (forum review article). Antioxid Redox Signal 11(4):841–860

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Phieler J, Garcia-Martin R, Lambris JD, Chavakis T (2013) The role of the complement system in metabolic organs and metabolic diseases. Semin Immunol 25(1):47–53

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Piconi L (2003) Oxidative stress in diabetes. Clin Chem Lab Med 41(9):1144–1149

    Article  CAS  PubMed  Google Scholar 

  • Pitocco D (2013) Oxidative stress in diabetes: implications for vascular and other complications. Int J Mol Sci 14:21525–21550

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Poitout V, Robertson RP (2008) Glucolipotoxicity: fuel excess and β-cell dysfunction. Endocr Rev 29:351–366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poon AK et al (2014) Comparative associations of diabetes risk factors with five measures of hyperglycemia. BMJ Open Diab Res Care 2(1):e000002

    Article  PubMed Central  PubMed  Google Scholar 

  • Preedy VR, Hunter RJ (eds) (2011) Adipokines, 1st edn. CRC Press LCC, New York, NY. pp 1–458. ISBN 9781578086894

    Google Scholar 

  • Pucino V et al (2014) Regulatory T cells, leptin and angiogenesis. Chem Immunol Allergy 99:155–169

    Article  CAS  PubMed  Google Scholar 

  • Pugia MJ, Valdes R, Jortani SA (2007) Chapter on urinary trypsin inhibitors: structure, biological relevance and measurement. In: Makowski G (ed) Advances in clinical chemistry, vol 44. Academic Press. Elsevier, New York, NY. ISBN 10: 0-12-373704-4

    Google Scholar 

  • Rahbar S (2005) The discovery of glycated hemoglobin: a major event in the study of nonenzymatic chemistry in biological systems. Ann N Y Acad Sci 1043:9–19

    Article  CAS  PubMed  Google Scholar 

  • Ramasamy R, Yan SF, Schmidt AM (2011) Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Ann N Y Acad Sci 1243:88–102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramírez-Boo M et al (2012) Characterization of the glycated human cerebrospinal fluid proteome. J Proteomics 75(15):4766–4782

    Article  PubMed  CAS  Google Scholar 

  • Rao X, Zhong J, Sun Q (2014) The heterogenic properties of monocytes/macrophages and neutrophils in inflammatory response in diabetes. Life Sci 116(2):59–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riad A (2007) The role of the renal kallikrein–kinin system in diabetic nephropathy. Curr Opin Nephrol Hypertens 16(1):22–26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roberts AC, Porter KE (2013) Cellular and molecular mechanisms of endothelial dysfunction in diabetes. Diab Vasc Dis Res 10(6):472–482

    Article  PubMed  CAS  Google Scholar 

  • Satoh N. Leptin to adiponectin ratio as a potential atherogenic index in obese type 2 diabetic patients. Diabetes Care. 2004;27(10):2488–2490

    Google Scholar 

  • Seifert EL et al (2010) Electron transport chain-dependent and -independent mechanisms of mitochondrial H2O2 emission during long-chain fatty acid oxidation. J Biol Chem 285(8):5748–5758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Skolnik EY et al (1991) Human and rat mesangial cell receptors for glucose-modified proteins: potential role in kidney tissue remodelling and diabetic nephropathy. J Exp Med 174:931–939

    Article  CAS  PubMed  Google Scholar 

  • Smith MM (2012) Minson CT obesity and adipokines: effects on sympathetic overactivity. J Physiol 590(Pt 8):1787–1801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sorisky A, Magun R, Gagnon AM (2000) Adipose cell apoptosis: death in the energy depot. Int J Obes 24(Suppl 4):S3–S7

    Article  CAS  Google Scholar 

  • Storz P (2005) Reactive oxygen species in tumor progression. Front Biosci 10:1881–1896

    Article  CAS  PubMed  Google Scholar 

  • Stralfors P, Honnor RC (1989) Insulin-induced dephosphorylation of hormone-sensitive lipase. Eur J Biochem 182(2):379

    Article  CAS  PubMed  Google Scholar 

  • Sweeney G (2002) Leptin signaling. Cell Signal 14:655–663

    Article  CAS  PubMed  Google Scholar 

  • Throckmorton DC et al (1995) PDGF and TGF-β mediate collagen production by mesangial cells exposed to advanced glycosylation end products. Kidney Int 48:111–117

    Article  CAS  PubMed  Google Scholar 

  • Tilg H, Moschen AR (2006) Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 6:772–783

    Article  CAS  PubMed  Google Scholar 

  • Trapani JA (2001) Granzymes: a family of lymphocyte granule serine proteases. Genome Biol 2:30141–30147

    Article  Google Scholar 

  • Travers RL et al (2015) The impact of adiposity on adipose tissue-resident lymphocyte activation in humans. Int J Obes (Lond) 39:762–769

    Article  CAS  Google Scholar 

  • Trayhurn P, Bohan Wang B, Wood SI (2008) Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity? Br J Nutr 100:227–235

    Article  CAS  PubMed  Google Scholar 

  • Tsuriya D et al (2011) Significant correlation between visceral adiposity and high-sensitivity C-reactive protein (hs-CRP) in Japanese subjects. Intern Med 50:2767–2773

    Article  CAS  PubMed  Google Scholar 

  • Ulven SM et al (2005) LXR is crucial in lipid metabolism prostaglandins. Leukot Essent Fatty Acids 73:59–63

    Article  CAS  Google Scholar 

  • Valencia JV et al (2004) Binding of receptor for advanced glycation end products (RAGE) ligands is not sufficient to induce inflammatory signals: lack of activity of endotoxin-free albumin-derived advanced glycation end products. Diabetologia 47(5):844–852

    Article  CAS  PubMed  Google Scholar 

  • Vila IK et al (2014) Immune cell toll-like receptor 4 mediates the development of obesity- and endotoxemia- associated adipose tissue fibrosis. Cell Rep 7(4):1116–1129

    Article  CAS  PubMed  Google Scholar 

  • Wa C et al (2007) Characterization of glycation adducts on human serum albumin by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin Chim Acta 385(1–2):48–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Nakayama T (2010) Inflammation, a link between obesity and cardiovascular disease. Mediators Inflamm 2010:Article ID 535918, 17 pgs

    Article  CAS  Google Scholar 

  • Wang Y et al (2005) Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerization-dependent manner. J Biol Chem 280(18):18341–18347

    Article  CAS  PubMed  Google Scholar 

  • Wautier JL et al (1996) Receptor-mediated endothelial cell dysfunction in diabetic vasculopathy soluble receptor for advanced glycation end products blocks hyperpermeability in diabetic rats. J Clin Invest 97(1):238–243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weil BR et al (2011) Enhanced endothelin-1 system activity with overweight and obesity. Am J Physiol Heart Circ Physiol 301(3):H689–H695

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilkinson-Berka JL et al (2013) Reactive oxygen species, Nox and angiotensin II in angiogenesis: implications for retinopathy (review). Clin Sci (Lond) 124(10):597–615

    Article  CAS  Google Scholar 

  • Winter WE, Schatz DA (2011) Autoimmune markers in diabetes. Clin Chem 57(2):168–175

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi T et al (2002) Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8(11):1288–1295

    Article  CAS  PubMed  Google Scholar 

  • Yan L (2014) Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress (review). J Diab Res 2014:137919

    Google Scholar 

  • Yang JJ (1996) Apoptosis of endothelial cells induced by the neutrophil serine proteases proteinase 3 and elastase. Am J Pathol 149(5):1617–1626

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang DX, Gutterman DD (2007) Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol 292:H2023–H2031

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y et al (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372(6505):425–432

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q et al (2008) Proteomic profiling of nonenzymatically glycated proteins in human plasma and erythrocyte membranes. J Proteome Res 7(5):2025–2032

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Pugia PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pugia, M. (2015). Impact of Inflammation and Innate Immunity Response in Obesity Mediated Diabetes. In: Pugia, M. (eds) Inflammatory Pathways in Diabetes. Progress in Inflammation Research. Springer, Cham. https://doi.org/10.1007/978-3-319-21927-1_1

Download citation

Publish with us

Policies and ethics