Skip to main content

Distributed Algorithm of Data Allocation in the Fragmented Programming System LuNA

  • Conference paper
  • First Online:
Parallel Computing Technologies (PaCT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9251))

Included in the following conference series:


The paper presents distributed algorithm with local communications Rope-of-Beads for static and dynamic data allocation in the LuNA fragmented programming system. LuNA is intended for implementation of large-scale numerical models on multicomputers with large number of processors and various network topologies. The algorithm takes into account the structure of a numerical model, provides static and dynamic load balancing and can be used in various network topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. Malyshkin, V.E., Perepelkin, V.A.: LuNA fragmented programming system, main functions and peculiarities of run-time subsystem. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp. 53–61. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Malyshkin, V.E., Perepelkin, V.A.: Optimization Methods of parallel execution of numerical programs in the LuNA fragmented programming system. J. Supercomputing 61(1), 235–248 (2012)

    Article  Google Scholar 

  3. Malyshkin, V.E., Perepelkin, V.A.: The PIC implementation in LuNA system of fragmented programming. J. Supercomputing 69(1), 89–97 (2014)

    Article  Google Scholar 

  4. Kraeva, M.A., Malyshkin, V.E.: Assembly technology for parallel realization of numerical models on MIMD-multicomputers. J. Future Gener. Comput. Syst. 17(6), 755–765 (2001)

    Article  MATH  Google Scholar 

  5. Kireev, S.E., Malyshkin, V.E.: Fragmentation of numerical algorithms for parallel subroutines library. J. Supercomputing 57(2), 161–171 (2011)

    Article  Google Scholar 

  6. Kraeva, M.A., Malyshkin, V.E.: Dynamic load balancing algorithms for implementation of pic method on MIMD multicomputers. J. Programmirovanie, no. 1, pp. 47–53 (1999) (In Russian)

    Google Scholar 

  7. Hu, Y.F., Blake, R.J.: An improved diffusion algorithm for dynamic load balancing. J. Parallel Comput. 25(4), 417–444 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Corradi, A., Leonardi, L., Zambonelli, F.: Performance comparison of load balancing policies based on a diffusion scheme. In: Lengauer, C., Griebl, M., Gorlatch, S. (eds.) Euro-Par 1997. LNCS, vol. 1300, pp. 882–886. Springer, Heidelberg (1997)

    Google Scholar 

  9. Anderson, J.M., Lam, M.S.: Global optimizations for parallelism and locality on scalable parallel machines. In: ACM-SIGPLAN PLDI 1993, pp. 112–125. ACM, New York (1993)

    Google Scholar 

  10. Li, J., Chen, M.: The data alignment phase in compiling programs for distributed-memory machines. J. Parallel Distrib. Comput. 13(2), 213–221 (1991)

    Article  Google Scholar 

  11. Lee, P.: Efficient algorithms for data distribution on distributed memory parallel computers. J. IEEE Trans. Parallel Distrib. Syst. 8(8), 825–839 (1997)

    Article  Google Scholar 

  12. Kwok, Y.-K., Ahmad, I.: Design and evaluation of data allocation algorithms for distributed multimedia database systems. IEEE J. Sel. Areas Commun. 14(7), 1332–1348 (1997)

    Article  Google Scholar 

  13. Iacob, N.M.: Fragmentation and data allocation in the distributed environments. Annals of the University of Craiova - Mathematics and Computer Science Series 38(3), 76–83 (2011)

    Google Scholar 

  14. Jagannatha, S., Geetha, D.E., Suresh Kumar, T.V., Rajani Kanth, K.: Load balancing in distributed database system using resource allocation approach. J. Adv. Res. Comput. Commun. Eng. 2(7), 2529–2535 (2013)

    Google Scholar 

  15. Honicky, R.J., Miller E.L.: Replication under scalable hashing: a family of algorithms for scalable decentralized data distribution. In: 18th International Parallel and Distributed Processing Symposium (2004)

    Google Scholar 

  16. Alicherry, M., Lakshman, T.V.: Network aware resource allocation in distributed clouds. In: INFOCOM 2012, pp. 963–971. IEEE (2012)

    Google Scholar 

  17. AuYoung, A., Chun, B.N., Snoeren, A.C., Vahdat, A.: Resource allocation in federated distributed computing infrastructures. In: First Workshop on Operating System and Architectural Support for the On-demand IT InfraStructure (2004)

    Google Scholar 

  18. Raman, R., Livny, M., Solomon, M.: Matchmaking: distributed resource management for high throughput computing. J. Cluster Comput. 2(1), 129–138 (1999)

    Article  Google Scholar 

  19. Reddy, C., Bondfhugula, U.: Effective automatic computation placement and data allocation for parallelization of regular programs. In: 28th ACM International Conference on Supercomputing, pp. 13–22. ACM, New York (2014)

    Google Scholar 

  20. Baden, S.B., Shalit, D.: Performance tradeoffs in multi-tier formulation of a finite difference method. In: Alexandrov, V.N., Dongarra, J., Juliano, B.A., Renner, R.S., Tan, C.J.K. (eds.) ICCS-ComputSci 2001. LNCS, vol. 2073, pp. 785–794. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  21. Ishikawa, K.-I.: ASURA: Scalable and Uniform Data Distribution Algorithm for Storage Clusters. Computing Research Repository, abs/1309.7720 (2013)

    Google Scholar 

  22. Chawla, A., Reed B., Juhnke, K., Syed, G.: Semantics of Caching with SPOCA: A Stateless, Proportional, Optimally-Consistent Addressing Algorithm. In: USENIX Annual Technical Conference 2011, pp. 33–33. USENIX Association (2011)

    Google Scholar 

  23. Lawder, J.K., King, P.J.H.: Using space-filling curves for multi-dimensional indexing. In: Jeffery, K., Lings, B. (eds.) BNCOD 2000. LNCS, vol. 1832, pp. 20–35. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  24. Moon, B., Jagadish, H.V., Faloutsos, C., Saltz, J.H.: Analysis of the Clustering Properties of the Hilbert Space-Filling Curve. J IEEE Trans. Knowl. Data Eng. 13(1), 124–141 (2001)

    Article  Google Scholar 

Download references


This work was supported by Russian Foundation for Basic Research (grants 14-07-00381 a and 14-01-31328 mol_a).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Vladislav A. Perepelkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Malyshkin, V.E., Perepelkin, V.A., Schukin, G.A. (2015). Distributed Algorithm of Data Allocation in the Fragmented Programming System LuNA. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2015. Lecture Notes in Computer Science(), vol 9251. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21908-0

  • Online ISBN: 978-3-319-21909-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics