Advertisement

A Modular-Positional Computation Technique for Multiple-Precision Floating-Point Arithmetic

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9251)

Abstract

Floating-point machine precision is often not sufficient to correctly solve large scientific and engineering problems. Moreover, computation time is a critical parameter here. Therefore, any research aimed at developing high-speed methods for multiple-precision arithmetic is of great immediate interest. This paper deals with a new technique of multiple-precision computations, based on the use of modular-positional floating-point format for representation of numbers. In this format, the significands are represented in residue number system (RNS), thus enabling high-speed processing of the significands with possible parallelization by RNS modules. Number exponents and signs are represented in the binary number system. The interval-positional characteristic method is used to increase the speed of executing complex non-modular operations in RNS. Algorithms for rounding off and aligning the exponents of numbers in modular-positional format are presented. The structure and features of a new multiple-precision library are given. Some results of an experimental study on the efficiency of this library are also presented.

Keywords

Multiple-precision arithmetic Floating-point Residue number system Non-modular operation Rounding Performance 

Notes

Acknowledgement

The reported study was supported by RFBR, research project No. 14-07-31075 mol_a.

References

  1. 1.
    Collange, S., Defour, D., Graillat, S., Iakymchuk, R.: Reproducible and accurate matrix multiplication for high-performance computing. In: Nehmeier, M. (ed.) Book of Abstracts of the 16th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics (SCAN 2014), pp. 42–43. Würzburg, Germany (2014)Google Scholar
  2. 2.
    Bailey, D.H., Barrio, R., Borwein, J.M.: High-precision computation: mathematical physics and dynamics. Appl. Math. Comput. 218(20), 10106–10121 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bailey, D.H., Borwein, J.M.: High-Precision Arithmetic: Progress and Challenges. http://www.davidhbailey.com/dhbpapers/hp-arith.pdf
  4. 4.
    Ghazi, K.R., Lefèvre, V., Théveny, P., Zimmermann, P.: Why and how to use arbitrary precision. Comput. Sci. Eng. 12(3), 62–65 (2010)CrossRefGoogle Scholar
  5. 5.
    Rump, S.M.: Algorithms for verified inclusions - theory and practice. In: Moore, R.E. (ed.) Reliability in Computing, pp. 109–126. Academic Press, New York (1988)Google Scholar
  6. 6.
    IEEE Standard for Floating-Point Arithmetic, IEEE Std. 754–2008, pp. 1–58. IEEE Computer Society, New York (2008)Google Scholar
  7. 7.
    Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P., Lefèvre, V., Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arithmetic. Birkhäuser, Boston (2010)CrossRefzbMATHGoogle Scholar
  8. 8.
    Dekker, T.J.: A floating-point technique for extending the available precision. Numerische Mathematik 18(3), 224–242 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bailey, D.H., Hida, Y., Li, X.S., Thompson, B.: ARPREC: An Arbitrary Precision Computation Package. Lawrence Berkeley National Laboratory, Technical report (2002). http://www.davidhbailey.com/dhbpapers/arprec.pdf
  10. 10.
    The GNU Multiple Precision Arithmetic Library. https://gmplib.org
  11. 11.
    Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2) (2007). Article No. 13Google Scholar
  12. 12.
    NTL: A Library for doing Number Theory. http://www.shoup.net/ntl
  13. 13.
    Garner, H.L.: The residue number system. IRE Trans. Electron. Comput. 8(2), 140–147 (1959)CrossRefGoogle Scholar
  14. 14.
    Szabo, N.S., Tanaka, R.I.: Residue Arithmetic and its Application to Computer Technology. McGraw-Hill, New York (1967)Google Scholar
  15. 15.
    Omondi, A., Premkumar, B.: Residue Number Systems: Theory and Implementation. Imperial College Press, London (2007)Google Scholar
  16. 16.
    Parhami, B.: Computer Arithmetic: Algorithms and Hardware Designs. Oxford University Press, Oxford (2000)zbMATHGoogle Scholar
  17. 17.
    Cardarilli, G.C., Del Re, A., Nannarelli, A., Re, M.: Programmable power-of-two RNS scaler and its application to a QRNS polyphase filter. In: 2005 IEEE International Symposium on Circuits and Systems (ISCAS 2005), pp. 1002–1005. Kobe, Japan (2005)Google Scholar
  18. 18.
    Huang, C.H.: A fully parallel mixed-radix conversion algorithm for residue number applications. IEEE Trans. Comput. 32(4), 398–402 (1983)CrossRefGoogle Scholar
  19. 19.
    Gbolagade, K.A., Cotofana, S.D.: An \(O(n)\) residue number system to mixed radix conversion technique. In: IEEE International Symposium on Circuits and Systems (ISCAS 2009), pp. 521–524. IEEE Press, New York (2009)Google Scholar
  20. 20.
    Akkal, M., Siy, P.: A new mixed radix conversion algorithm MRC-II. J. Syst. Archit. 53, 577–586 (2007)CrossRefGoogle Scholar
  21. 21.
    Isupov, K.S.: The method for implementation non-modular operations in modular arithmetic with use of interval positional characteristics. University proceedings. Volga region. Eng. Sci. 3, 26–39 (2013)Google Scholar
  22. 22.
    Isupov, K.S.: Calculation interval-positional characteristic algorithm for implementation non-modular operations in residue number systems. Bulletin of the South Ural State University. Comput. Technol., Autom. Control, Radio Electron. 14(1), 89–97 (2014)Google Scholar
  23. 23.
    Isupov, K.S.: On an algorithm for number comparison in the residue number system. Vestnik of Astrakhan State Technical University. Manage., Comput. Sci. Inf. (3), 40–49 (2014)Google Scholar
  24. 24.
    Kulisch, U.: Implementation and Applications Computer Arithmetic and Validity - Theory, implementation, and applications. de Gruyter, Berlin (2008). http://www.degruyter.com/view/product/178972 zbMATHGoogle Scholar
  25. 25.
    Isupov, K.S., Maltsev, A.N.: A parallel-processing-oriented method for the representation of multi-digit floating-point numbers. Numer. Methods Program. 15(4), 631–643 (2014)Google Scholar
  26. 26.
    Sasaki, A.: The basis for implementation of additive operations in the residue number system. IEEE Trans. Comput. 17(11), 1066–1073 (1968)CrossRefzbMATHGoogle Scholar
  27. 27.
    Kinoshita, E., Kosako, H., Kojima, Y.: Floating-point arithmetic algorithms in the symmetric residue number system. IEEE Trans. Comput. 23(1), 9–20 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kinoshita, E., Lee, K.-J.: A residue arithmetic extension for reliable scientific computation. IEEE Trans. Comput. 46(2), 129–138 (1997)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Chiang, J.-S., Lu, M.: Floating-point numbers in residue number systems. Comput. Math. Appl. 22(5), 127–140 (1991)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Electronic Computing MachinesVyatka State UniversityKirovRussia

Personalised recommendations