Skip to main content

Contradiction Between Parallelization Efficiency and Stochasticity in Cellular Automata Models of Reaction-Diffusion Phenomena

  • Conference paper
  • First Online:
Parallel Computing Technologies (PaCT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9251))

Included in the following conference series:

Abstract

Simulation of reaction-diffusion phenomena are usually done using cellular automata with asynchronous mode of operation, which is in accordance with the stochastic nature of such processes, though does not provide acceptable parallelization efficiency, when the model is implemented on a supercomputer. The contradiction is resolved by endowing the asynchronous mode with some synchronization under the condition that the result is not distorted. How much of synchronization is admissible is not known. Moreover, it is not known what is the impact of synchronization on the parallelization efficiency. In the paper an attempt is made to answer these questions basing on the analysis of parallel experimental simulations of typical subclasses of reaction diffusion processes on a supercomputer.

Supported by Presidium of Russian Academy of Sciences, Basic Research Program N 15-9 (2015).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoekstra, A.G., Kroc, J.K., Sloot, P.M.A. (eds.): Simulating Complex Systems by Cellular Automata. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  2. Desai, R.C., Kapral, R.: Dynamics of Self-organized and Self-assembled Structures. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  3. Echieverra, C., Kapral, R.: Molecular crowding and protein enzymatic dynamics. Phys. Chem. 14, 6755–6763 (2012)

    Google Scholar 

  4. Bandini, S., Bonomi, A., Vizzari, G.: What do we mean by asynchronous CA? a reflection on types and effects of asynchronicity. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds.) ACRI 2010. LNCS, vol. 6350, pp. 385–394. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Bouré, O., Fatès, N., Chevrier, V.: First steps on asynchronous lattice-gas models with an application to a swarming rule. In: Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2012. LNCS, vol. 7495, pp. 633–642. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Kireeva, A.: Parallel implementation of totalistic cellular automata model of stable patterns formation. In: Malyshkin, V. (ed.) PaCT 2013. LNCS, vol. 7979, pp. 330–343. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Matveev, A.V., Latkin, E.I., Elokhin, V.I., Gorodetskii, V.V.: Turbulent and stripes wave patterns caused by limited CO\(_{ads}\) diffusion during CO oxidation over Pd(110) surface: kinetic Monte Carlo studies. Chem. Eng. J. 107, 181–189 (2005)

    Article  MATH  Google Scholar 

  8. Nurminen, L., Kuonen, A., Kaski, K.: Kinetic Monte-Carlo simulation on patterned substrates. Phys. Rev. B 63, 03540:17–03540:7 (2000)

    Article  Google Scholar 

  9. Chatterjee, A., Vlaches, D.: G.: An overview of spatial microscopic and accelerated kinetic Monte-Carlo methods. J. Comput. Aided Mater. Des. 14, 253–308 (2007)

    Article  Google Scholar 

  10. Bandman, O.: Parallel composition of asynchronous cellular automata simulating reaction diffusion processes. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds.) ACRI 2010. LNCS, vol. 6350, pp. 395–398. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Kalgin, K.: Comparative study of parallel algorithms for asynchronous cellular automata simulation on different computer architectures. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds.) ACRI 2010. LNCS, vol. 6350, pp. 399–408. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Bandman, O.: Implementation of large-scale cellular automata models on multi-core computers and clusters. In: 2013 International Conference on IEEE Conference Publications High Performance Computing and Simulation (HPCS), pp. 304–310 (2013)

    Google Scholar 

  13. Bandman, O.: Parallel simulation of asynchronous cellular automata evolution. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 41–47. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Bandman, O., Kireeva, A.: Stochastic cellular automata simulation of oscillations and autowaves in reaction-diffusion systems. Numerical Analysis and Applications, vol. 2 (2015)

    Google Scholar 

  15. Bandman, O.: Functioning modes of asynchronous cellular automata simulating nonlinear spatial dynamics. Appl. Discrete Math. 1, 110–124 (2015). (in Russian)

    Google Scholar 

  16. Toffolli, T., Margolus, N.: Cellular Automata Machines: A New Environment for Modeling. MIT Press, USA (1987)

    Google Scholar 

  17. Bandman, O.: Cellular automata diffusion models for multicomputer implementation. Bull. Novosibirsk Comput. Cent. Ser. Comput. Sci. 36, 21–31 (2014)

    Google Scholar 

  18. Kolmogorov, A.N., Petrovski, I.G., Piskunov, I.S.: Investigation of the equation of diffusion, combined with the increase of substance and its application to a biological problem. Bull. Moscow State Univ. A Issue 6, 1–25 (1937). (in Russian)

    Google Scholar 

  19. Fisher, R.A.: The genetical Theory of Natural Selection. Oxford University Press, New York (1930)

    Book  MATH  Google Scholar 

  20. Szakály, T., Lagzi, I., Izsák, F., Roszol, L., Volford, A.: Stochastic cellular automata modeling excitable systems. Central Eur. J. Phys. 5(4), 471–486 (2007)

    Google Scholar 

  21. van Saarloos, W.: Front propagation into unstable states. Phys. Rep. 386, 209–222 (2003)

    Google Scholar 

  22. Witten Jr., T.A., Sander, I.M.: Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47(19), 1400–1403 (1981)

    Article  Google Scholar 

  23. Ackland, G.J., Tweedie, E.S.: Microscopic model of diffusion limited aggregation and electro deposition in the presence of leveling molecules. Phys. Rev. E 73, 011606 (2006)

    Article  Google Scholar 

  24. Bogoyavlenskiy, A., Chernova, N.A.: Diffusion-limited aggregation: a relationship between surface thermodynamics and crystal morphology. Phys. Rev. E. N 2, 1629–1633 (2000)

    Article  Google Scholar 

  25. Batty, M., Longley, P.: Urban growth and form: scaling, fractal geometry, and diffusion-limited aggregation. Environ. Plann. A 21, 1447–1472 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Bandman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bandman, O. (2015). Contradiction Between Parallelization Efficiency and Stochasticity in Cellular Automata Models of Reaction-Diffusion Phenomena. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2015. Lecture Notes in Computer Science(), vol 9251. Springer, Cham. https://doi.org/10.1007/978-3-319-21909-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21909-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21908-0

  • Online ISBN: 978-3-319-21909-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics