Skip to main content

Dynamic Load Balancing Based on Rectilinear Partitioning in Particle-in-Cell Plasma Simulation

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 9251)

Abstract

This paper considers load balancing in Particle-in-Cell plasma simulation on cluster systems. We propose a dynamic load balancing scheme based on rectilinear partitioning and discuss implementation of efficient imbalance estimation and rebalancing. We analyze the impact of load balancing on performance and accuracy. On a test plasma heating problem dynamic load balancing yields nearly 2 times speedup and better scaling. On the real-world plasma target irradiation simulation load balancing allows to mitigate particle resampling and thus improve accuracy of the simulation without increasing the runtime. Balancing-related overhead in both cases are under 1.5 % of total run time.

Keywords

  • Load balancing
  • High performance computing
  • Plasma simulation
  • Particle-in-cell

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Birdsal, C., Langdon, A.: Plasma Physics via Computer Simulation. Taylor & Francis Group, New York (2005)

    Google Scholar 

  2. Gonoskov, A., Bastrakov, S., Efimenko, E., Ilderton, A., Marklund, M., Meyerov, I., Muraviev, A., Surmin, I., Wallin, E.: Extending PIC Schemes for The Study of Physics in Ultra-Strong Laser Fields. arXiv:1412:6426 (2014)

    Google Scholar 

  3. Pukhov, A.: Three-dimensional electromagnetic relativistic particle-in-cell code VLPL. J. Plasma Phys. 61, 425–433 (1999)

    CrossRef  Google Scholar 

  4. Fonseca, R.A., Silva, L.O., Tsung, F.S., Decyk, V.K., Lu, W., Ren, C., Mori, W.B., Deng, S., Lee, S., Katsouleas, T., Adam, J.C.: OSIRIS: a three-dimensional, fully relativistic particle in cell code for modeling plasma based accelerators. In: Sloot, P.M.A., Hoekstra, A.G., Tan Kenneth, C.J., Dongarra, J.J. (eds.) ICCS-ComputSci 2002, Part III. LNCS, vol. 2331, p. 342. Springer, Heidelberg (2002)

    CrossRef  Google Scholar 

  5. Burau, H., Widera, R., Honig, W., et al.: PIConGPU: a fully relativistic particle-in-cell code for a GPU cluster. IEEE Trans. Plasma Sci. 33, 2831–2839 (2010)

    CrossRef  Google Scholar 

  6. Bastrakov, S., Donchenko, R., Gonoskov, A., Efimenko, E., Malyshev, A., Meyerov, I., Surmin, I.: Particle-in-cell plasma simulation on heterogeneous cluster systems. J. Comput. Sci. 3, 474–479 (2012)

    CrossRef  Google Scholar 

  7. Bastrakov, S., Meyerov, I., Surmin, I., Efimenko, E., Gonoskov, A., Malyshev, A., Shiryaev, M.: Particle-in-cell plasma simulation on CPUs, GPUs and Xeon Phi coprocessors. In: Kunkel, J.M., Ludwig T., Meuer, H.W. (eds.) ISC 2014. LNCS, vol. 8488, pp. 513–514. Springer (2014)

    Google Scholar 

  8. Liewer, P.C., Decyk, V.K.: A general concurrent algorithm for plasma particle-in-cell codes. J. Comput. Phs. 85, 302–322 (1989)

    CrossRef  Google Scholar 

  9. Walker, D.W.: Characterising the parallel performance of a large-scale, particle-in-cell plasma simulation code. Concurr. Pract. Experience 2, 257–288 (1990)

    CrossRef  Google Scholar 

  10. Kraeva, M.A., Malyshkin, V.E.: Implementation of PIC method on MIMD multicomputers with assembly technology. In: Hertzberger, B., Sloot, P. (eds.) High-Performance Computing and Networking. LNCS, vol. 1225, pp. 541–549. Springer, Heidelberg (1997)

    CrossRef  Google Scholar 

  11. Kraeva, M.A., Malyshkin, V.E.: Assembly technology for parallel realization of numerical models on MIMD-multicomputers. Int. J. future Gener. Comput. Syst. 17, 755–765 (2001)

    CrossRef  MATH  Google Scholar 

  12. Fox, G.C.: A review of automatic load balancing and decomposition methods for the hypercube. Numer. Algorithms Mod. Parallel Comput. Architect. 13, 63–76 (1988)

    CrossRef  Google Scholar 

  13. Barnes, J., Hutt, P.: A hierarchical O(N logN) force calculation algorithm. Nature. 324, 446–449 (1986)

    CrossRef  Google Scholar 

  14. Plimpton, S.J., Seidel, D.B., Pasik, M.F., Coats, R.S., Montry, G.R.: A load-balancing algorithm for a parallel electromagnetic particle-in-cell code. Comput. Phys. Commun. 152, 227–241 (2003)

    CrossRef  Google Scholar 

  15. Nakashima, H., Miyake, Y., Usui, H., Omura, Y.: OhHelp: a scalable domain-decomposing dynamic load balancing for particle-in-cell simulations. In: 23rd International Conference on Supercomputing, pp. 90–99. ACM New York (2009)

    Google Scholar 

  16. Nicol, D.N.: Rectilinear partitioning of irregular data parallel computations. J. Parallel Distrib. Comput. 23, 119–134 (1994)

    CrossRef  Google Scholar 

  17. Berenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    CrossRef  MathSciNet  MATH  Google Scholar 

  18. Taflove, A.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, London (1995)

    MATH  Google Scholar 

  19. Corradi, A., Leonardi, L., Zambonelli, F.: Performance comparison of load balancing policies based on a diffusion scheme. In: Lengauer, C., Griebl, M., Gorlatch, S. (eds.) Euro-Par’97 Parallel Processing. LNCS, vol. 1300, pp. 882–886. Springer, Heidelberg (1997)

    CrossRef  Google Scholar 

  20. Zhong, Z., Rychkov, V., Lastovetsky, A.: Data partitioning on multicore and multi-GPU platforms using functional performance models. IEEE Trans. Comput. 12, 14 (2014)

    Google Scholar 

  21. Bashinov, A.V., Kim, A.V.: On the electrodynamic model of ultra-relativistic laser-plasma interactions caused by radiation reaction effects. Phys. Plasmas 20, 113111 (2013)

    CrossRef  Google Scholar 

  22. Bell, A.R., Kirk, J.G.: Phys. Rev. Lett. 101, 200403 (2008)

    CrossRef  Google Scholar 

  23. Ritus, V.: Quantum effects of the interaction of elementary particles with an intense electromagnetic field. J. Sov. Laser Res. 6, 497–617 (1985)

    CrossRef  Google Scholar 

  24. Nikishov, A.: Problems of intense external-field intensity in quantum electrodynamics. J. Sov. Laser Res. 6, 619–717 (1985)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iosif Meyerov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Surmin, I., Bashinov, A., Bastrakov, S., Efimenko, E., Gonoskov, A., Meyerov, I. (2015). Dynamic Load Balancing Based on Rectilinear Partitioning in Particle-in-Cell Plasma Simulation. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2015. Lecture Notes in Computer Science(), vol 9251. Springer, Cham. https://doi.org/10.1007/978-3-319-21909-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21909-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21908-0

  • Online ISBN: 978-3-319-21909-7

  • eBook Packages: Computer ScienceComputer Science (R0)