Abstract
There exist plenty sequential algorithms to sort n numbers that achieve the optimal time complexity of \(\varTheta (n\log n)\). We can sort on parallel architectures with distributed memory by considering the granularity of local sorting.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Han, Y.: Deterministic sorting in \(O(n\log \log n)\) time and linear space. J. Algorithms 50(1), 96–105 (2004)
Barbay, J., Navarro, G.: On compressing permutations and adaptive sorting. Theor. Comput. Sci. 513, 109–123 (2013)
Casanova, H., Legrand, A., Robert, Y.: Parallel Algorithms. Chapman & Hall/CRC Numerical Analysis and Scientific Computing. CRC Press, Boca Raton (2009)
Cypher, R., Greg Plaxton, C.: Deterministic sorting in nearly logarithmic time on the hypercube and related computers. J. Comput. Syst. Sci. 47(3), 501–548 (1993)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Nielsen, F. (2016). Parallel Sorting. In: Introduction to HPC with MPI for Data Science. Undergraduate Topics in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-21903-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-21903-5_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21902-8
Online ISBN: 978-3-319-21903-5
eBook Packages: Computer ScienceComputer Science (R0)