Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 429 Accesses

Abstract

During the last three decades, cosmology has undergone a transition from a theory-dominated discipline to a data-driven science. Currently, numerous Earth and space-based experiments provide observers with a continuous flow of high precision data, allowing us to constrain and rule out many of the models brought forward by theorists. For the first time, we have the tools to study in an accurate and quantitative way the origins and evolution of the Universe. It is unsurprising that our present days are commonly referred to as the era of precision cosmology. In this picture, the bispectrum of the cosmic microwave background has emerged as a powerful observable to discriminate between models of the early Universe. This short chapter is meant to familiarise the reader with the subjects that will be treated in depth in the rest of the thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acquaviva V, Bartolo N, Matarrese S, Riotto A (2003) Gauge-invariant second-order perturbations and non-Gaussianity from inflation. Nucl Phys B 667:119–148. doi:10.1016/S0550-3213(03)00550-9. arXiv:astro-ph/0209156

    Google Scholar 

  2. Albrecht A, Steinhardt PJ (1982) Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys Rev Lett 48:1220–1223. doi:10.1103/PhysRevLett.48.1220

    Article  ADS  Google Scholar 

  3. Bardeen JM, Steinhardt PJ, Turner MS (1983) Spontaneous creation of almost scale-free density perturbations in an inflationary universe. Phys Rev D 28:679–693. doi:10.1103/PhysRevD.28.679

    Article  ADS  Google Scholar 

  4. Bartolo N, Matarrese S, Riotto A (2004) Evolution of second-order cosmological perturbations and non-Gaussianity. J Cosmol Astropart Phys 1:003. doi:10.1088/1475-7516/2004/01/003. arXiv:astro-ph/0309692

    Google Scholar 

  5. Bartolo N, Matarrese S, Riotto A (2004b) Gauge-Invariant temperature Anisotropies and Primordial Non-Gaussianity. Phys Rev Lett 93(23):231301. doi:10.1103/PhysRevLett.93.231301. arXiv:astro-ph/0407505

  6. Bartolo N, Matarrese S, Riotto A (2006) Cosmic microwave background anisotropies at second order: I. J Cosmol Astro-Part Phys 6:24. doi:10.1088/1475-7516/2006/06/024. arXiv:astro-ph/0604416

    Google Scholar 

  7. Bartolo N, Matarrese S, Riotto A (2007) CMB anisotropies at second-order II: analytical approach. J Cosmol Astro-Part Phys 1:19. doi:10.1088/1475-7516/2007/01/019. arXiv:astro-ph/0610110

    Google Scholar 

  8. Bartolo N, Matarrese S, Riotto A (2010) Non-Gaussianity and the cosmic microwave background anisotropies. Adv Astron. doi:10.1155/2010/157079. arXiv:1001.3957

    Google Scholar 

  9. Bartolo N, Matarrese S, Riotto A (2012) Non-Gaussianity in the cosmic microwave background anisotropies at recombination in the squeezed limit. J Cosmol Astropart Phys 2:017. doi:10.1088/1475-7516/2012/02/017. arXiv:1109.2043

    Google Scholar 

  10. Beneke M, Fidler C (2010) Boltzmann hierarchy for the cosmic microwave background at second order including photon polarization. Phys Rev D 82(6):063,509. doi:10.1103/PhysRevD.82.063509. arXiv:1003.1834

  11. Bennett CL, Larson D, Weiland JL, Jarosik N, Hinshaw G et al (2013) Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: final maps and results. ApJS 208:20. doi:10.1088/0067-0049/208/2/20. arXiv:1212.5225

    Google Scholar 

  12. Blas D, Lesgourgues J, Tram T (2011) The Cosmic Linear Anisotropy Solving System (CLASS). Part II: approximation schemes. J Cosmol Astropart Phys 7:034. doi:10.1088/1475-7516/2011/07/034. arXiv:1104.2933

    Google Scholar 

  13. Boubekeur L, Creminelli P, D’Amico G, Noreña J, Vernizzi F (2009) Sachs-Wolfe at second order: the CMB bispectrum on large angular scales. J Cosmol Astropart Phys 8:029. doi:10.1088/1475-7516/2009/08/029. arXiv:0906.0980

    Google Scholar 

  14. Bueno Belloso A, Pettinari GW, Meures N, Percival WJ (2012) Using galaxy pairs as cosmological tracers. Phys Rev D 86(2):023530. doi:10.1103/PhysRevD.86.023530. arXiv:1204.5761

  15. Chen X (2010) Primordial Non-Gaussianities from inflation models. Adv Astron 2010:638979. doi:10.1155/2010/638979. arXiv:1002.1416

    Google Scholar 

  16. Creminelli P, Zaldarriaga M (2004) CMB 3-point functions generated by nonlinearities at recombination. Phys Rev D 70(8):083532. doi:10.1103/PhysRevD.70.083532. arXiv:astro-ph/0405428

  17. Creminelli P, Pitrou C, Vernizzi F (2011) The CMB bispectrum in the squeezed limit. J Cosmol Astropart Phys 11:025. doi:10.1088/1475-7516/2011/11/025. arXiv:1109.1822

    Google Scholar 

  18. Crill BP, Ade PAR, Artusa DR, Bhatia RS, Bock JJ, et al (2003) BOOMERANG: A Balloon-borne Millimeter-Wave Telescope and Total Power Receiver for Mapping Anisotropy in the Cosmic Microwave Background. ApJS 148:527–541. doi:10.1086/376894. arXiv:astro-ph/0206254

    Google Scholar 

  19. Dicke RH, Peebles PJE, Roll PG, Wilkinson DT (1965) Cosmic black-body radiation. Astrophys J 142:414–419. doi:10.1086/148306

    Article  ADS  Google Scholar 

  20. Fidler C, Pettinari GW, Beneke M, Crittenden R, Koyama K, Wands D (2014) The intrinsic B-mode polarisation of the Cosmic Microwave Background. J Cosmol Astropart Phys 7:011. doi:10.1088/1475-7516/2014/07/011. arXiv:1401.3296

    Google Scholar 

  21. Fidler C, Koyama K, Pettinari GW (2015) A new line-of-sight approach to the non-linear Cosmic Microwave Background. J Cosmol Astropart Phys 4:037. doi:10.1088/1475-7516/2015/04/037. arXiv:1409.2461

    Google Scholar 

  22. Gao X (2011) Testing gravity with non-Gaussianity. Phys Lett B 702(197–200):1008. doi:10.1016/j.physletb.2011.07.022. arXiv:1008.2123

    Google Scholar 

  23. Guth AH (1981) Inflationary universe: a possible solution to the horizon and flatness problems. Phys Rev D 23(2):347–356. doi:10.1103/PhysRevD.23.347

    Article  MathSciNet  ADS  Google Scholar 

  24. Hawking SW (1982) The development of irregularities in a single bubble inflationary universe. Phys Lett B 115:295–297. doi:10.1016/0370-2693(82)90373-2

    Article  ADS  Google Scholar 

  25. Huang Z, Vernizzi F (2013) Cosmic microwave background bispectrum from recombination. Phys Rev Lett 110:101,303. doi:10.1103/PhysRevLett.110.101303. http://link.aps.org/doi/10.1103/PhysRevLett.110.101303

  26. Jaffe AH et al (2001) Cosmology from MAXIMA-1, BOOMERANG, and COBE DMR Cosmic Microwave Background observations. Phys Rev Lett 86:3475–3479. doi:10.1103/PhysRevLett.86.3475. arXiv:astro-ph/0007333

    Google Scholar 

  27. Khatri R, Wandelt BD (2009) Crinkles in the last scattering surface: non-Gaussianity from inhomogeneous recombination. Phys Rev D 79(2):023501. doi:10.1103/PhysRevD.79.023501. arXiv:0810.4370

  28. Komatsu E (2010) Hunting for primordial non-Gaussianity in the cosmic microwave background. Class Quantum Gravity 27(12):124,010. doi:10.1088/0264-9381/27/12/124010. arXiv:1003.6097

    Google Scholar 

  29. Komatsu E, Spergel DN (2001) Acoustic signatures in the primary microwave background bispectrum. Phys Rev D 63(6):063002. doi:10.1103/PhysRevD.63.063002. arXiv:astro-ph/0005036

  30. Lesgourgues J (2011) The Cosmic Linear Anisotropy Solving System (CLASS) I: overview, arXiv:1104.2932

  31. Lewis A (2012) The full squeezed CMB bispectrum from inflation. J Cosmol Astropart Phys 6:023. doi:10.1088/1475-7516/2012/06/023. arXiv:1204.5018

    Google Scholar 

  32. Liguori M, Sefusatti E, Fergusson JR, Shellard EPS (2010) Primordial Non-Gaussianity and bispectrum measurements in the cosmic microwave background and large-scale structure. Adv Astron 1001. doi:10.1155/2010/980523. arXiv:1001.4707

    Google Scholar 

  33. Linde AD (1982) A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys Lett B 108:389–393. doi:10.1016/0370-2693(82)91219-9

    Article  MathSciNet  ADS  Google Scholar 

  34. Maldacena J (2003) Non-gaussian features of primordial fluctuations in single field inflationary models. J High Energy Phys 5:13. doi:10.1088/1126-6708/2003/05/013. arXiv:astro-ph/0210603

    Google Scholar 

  35. Martin J, Ringeval C, Vennin V (2014) Encyclopædia Inflationaris. Phys Dark Universe 5:75–235. doi:10.1016/j.dark.2014.01.003. arXiv:1303.3787

    Google Scholar 

  36. Mukhanov VF, Chibisov GV (1981) Quantum fluctuations and a nonsingular universe. Sov J Exp Theor Phys Lett 33:532

    ADS  Google Scholar 

  37. Naruko A, Pitrou C, Koyama K, Sasaki M (2013) Second-order Boltzmann equation: gauge dependence and gauge invariance. Class Quantum Gravity 30(16):165008. doi:10.1088/0264-9381/30/16/165008. arXiv:1304.6929

    Google Scholar 

  38. Nitta D, Komatsu E, Bartolo N, Matarrese S, Riotto A (2009) CMB anisotropies at second order III: bispectrum from products of the first-order perturbations. J Cosmol Astropart Phys 5:14. doi:10.1088/1475-7516/2009/05/014. arXiv:0903.0894

    Google Scholar 

  39. Peebles PJE (1968) Recombination of the primeval plasma. ApJ 153:1. doi:10.1086/149628

    Article  ADS  Google Scholar 

  40. Penzias AA, Wilson RW (1965) A measurement of excess antenna temperature at 4080 Mc/s. Astrophys J 142:419–421. doi:10.1086/148307

    Article  ADS  Google Scholar 

  41. Pettinari GW, Crittenden R (2010) On the evidence for axionlike particles from active galactic nuclei. Phys Rev D 82(8):083502. doi:10.1103/PhysRevD.82.083502. arXiv:1007.0024

  42. Pettinari GW, Fidler C, Crittenden R, Koyama K, Wands D (2013) The intrinsic bispectrum of the cosmic microwave background. J Cosmol Astropart Phys 4:003. doi:10.1088/1475-7516/2013/04/003. arXiv:1302.0832

    Google Scholar 

  43. Pettinari GW, Fidler C, Crittenden R, Koyama K, Lewis A, Wands D (2014) Impact of polarization on the intrinsic cosmic microwave background bispectrum. Phys Rev D 90(103):010. doi:10.1103/PhysRevD.90.103010. http://link.aps.org/doi/10.1103/PhysRevD.90.103010

  44. Pitrou C (2007) Gauge-invariant Boltzmann equation and the fluid limit. Class Quantum Gravity 24:6127–6158. doi:10.1088/0264-9381/24/24/001. arXiv:0706.4383

    Google Scholar 

  45. Pitrou C (2009) The radiative transfer for polarized radiation at second order in cosmological perturbations. Gen Relativ Gravit 41:2587–2595. doi:10.1007/s10714-009-0782-1. arXiv:0809.3245

    Google Scholar 

  46. Pitrou C (2011) CMBquick: spectrum and bispectrum of Cosmic Microwave Background (CMB). Astrophys Source Code Libr. http://www2.iap.fr/users/pitrou/cmbquick.htm. arXiv:1109.009

  47. Pitrou C, Uzan J (1003) Bernardeau F (2010) The cosmic microwave background bispectrum from the non-linear evolution of the cosmological perturbations. J Cosmol Astropart Phys 7:3. doi:10.1088/1475-7516/2010/07/003. arXiv:1003.0481

    Google Scholar 

  48. Collaboration Planck (2014a) Planck 2013 results. XVI. Cosmological parameters. A & A 571:A16. doi:10.1051/0004-6361/201321591. arXiv:1303.5076

  49. Planck Collaboration (2014b) Planck 2013 results. XXIV. Constraints on primordial non-Gaussianity. A & A571:A24. doi:10.1051/0004-6361/201321554. arXiv:1303.5084

  50. Renaux-Petel S, Fidler C, Pitrou C, Pettinari GW (2014) Spectral distortions in the cosmic microwave background polarization. J Cosmol Astropart Phys 3:033. doi:10.1088/1475-7516/2014/03/033. arXiv:1312.4448

    Google Scholar 

  51. Sánchez AG, Scóccola CG, Ross AJ, Percival W, Manera M, et al (2012) The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological implications of the large-scale two-point correlation function. MNRAS 425:415–437. doi:10.1111/j.1365-2966.2012.21502.x. arXiv:1203.6616

    Google Scholar 

  52. Senatore L, Tassev S, Zaldarriaga M (2009) Non-gaussianities from perturbing recombination. J Cosmol Astropart Phys 9:38. doi:10.1088/1475-7516/2009/09/038. arXiv:0812.3658

    Google Scholar 

  53. Smoot GF (1999) COBE observations and results. In: Maiani L, Melchiorri F, Vittorio N (eds) 3K cosmology, American Institute of Physics Conference Series, vol 476, pp 1–10. doi:10.1063/1.59326

  54. Starobinsky AA (1980) A new type of isotropic cosmological models without singularity. Phys Lett B 91:99–102. doi:10.1016/0370-2693(80)90670-X

    Article  ADS  Google Scholar 

  55. Starobinsky AA (1982) Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys Lett B 117:175–178. doi:10.1016/0370-2693(82)90541-X

    Article  ADS  Google Scholar 

  56. Su SC, Lim EA, Shellard EPS (2012) CMB bispectrum from non-linear effects during recombination. arXiv:1212.6968

  57. Yadav APS, Wandelt BD (2010) Primordial Non-Gaussianity in the Cosmic Microwave Background. Adv Astron. doi:10.1155/2010/565248. arXiv:1006.0275

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Walter Pettinari .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pettinari, G.W. (2016). Introduction. In: The Intrinsic Bispectrum of the Cosmic Microwave Background. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-21882-3_1

Download citation

Publish with us

Policies and ethics