Skip to main content

On Martingale Extensions of Vapnik–Chervonenkis Theory with Applications to Online Learning

  • Chapter
  • First Online:
Book cover Measures of Complexity

Abstract

We review recent advances on uniform martingale laws of large numbers and the associated sequential complexity measures. These results may be considered as forming a non-i.i.d. generalization of Vapnik–Chervonenkis theory. We discuss applications to online learning, provide a recipe for designing online learning algorithms, and illustrate the techniques on the problem of online node classification. We outline connections to statistical learning theory and discuss inductive principles of stochastic approximation and empirical risk minimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We may also consider the absolute value of the average without any complications.

  2. 2.

    Issues of measurability can be addressed with the techniques in [15].

  3. 3.

    It is also possible to study an intermediate setting, where some knowledge about the sequence is available (see, e.g., [27]).

References

  1. Abernethy, J., Bartlett, P.L., Rakhlin, A., Tewari, A.: Optimal strategies and minimax lower bounds for online convex games. In: Proceedings of the 21st Annual Conference on Learning Theory, pp. 414–424. Omnipress (2008)

    Google Scholar 

  2. Abernethy, J., Agarwal, A., Bartlett, P., Rakhlin, A.: A stochastic view of optimal regret through minimax duality. In: Proceedings of the 22th Annual Conference on Learning Theory (2009)

    Google Scholar 

  3. Aizerman, M.A., Braverman, E.M., Rozonoer, L.I.: The probability problem of pattern recognition learning and the method of potential functions. Avtomatika i Telemekhanika 25, 1175–1193 (1964)

    Google Scholar 

  4. Aizerman, M.A., Braverman, E.M., Rozonoer, L.I.: Theoretical foundations of the potential function method in pattern recognition learning. Avtomatika i Telemekhanika 25, 821–837 (1964)

    Google Scholar 

  5. Aizerman, M.A., Braverman, E.M., Rozonoer, L.I.: The Method of Potential Functions in the Theory of Machine Learning. Nauka, Moscow (1970)

    Google Scholar 

  6. Alon, N., Ben-David, S., Cesa-Bianchi, N., Haussler, D.: Scale-sensitive dimensions, uniform convergence, and learnability. J. ACM 44(4), 615–631 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Audibert, J.: Progressive mixture rules are deviation suboptimal. Adv. Neural Inf. Process. Syst. 20(2), 41–48 (2007)

    MathSciNet  Google Scholar 

  8. Bartlett, P.L., Mendelson, S.: Rademacher and Gaussian complexities: risk bounds and structural results. J. Mach. Learn. Res. 3, 463–482 (2002)

    MathSciNet  Google Scholar 

  9. Bartlett, P.L., Long, P.M., Williamson, R.C.: Fat-shattering and the learnability of real-valued functions. J. Comput. Syst. Sci. 52(3), 434–452 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ben-David, S., Pál, D., Shalev-Shwartz, S.: Agnostic online learning. In: Proceedings of the 22th Annual Conference on Learning Theory (2009)

    Google Scholar 

  11. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  12. Cesa-Bianchi, N., Freund, Y., Haussler, D., Helmbold, D.P., Schapire, R.E., Warmuth, M.K.: How to use expert advice. J. ACM 44(3), 427–485 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cesa-Bianchi, N., Conconi, A., Gentile, C.: On the generalization ability of on-line learning algorithms. IEEE Trans. Inf. Theory 50(9), 2050–2057 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dudley, R.M.: A course on empirical processes. In: Hennequin, P.L. (ed.) École d’Été de Probabilités de Saint-Flour XII–1982. Lecture Notes in Mathematics, vol. 1097, pp. 2–142. Springer, Berlin (1984)

    Google Scholar 

  15. Dudley, R.M.: Uniform Central Limit Theorems. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  16. Juditsky, A., Rigollet, P., Tsybakov, A.: Learning by mirror averaging. Ann. Stat. 36(5), 2183–2206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kearns, M.J., Schapire, R.E.: Efficient distribution-free learning of probabilistic concepts. J. Comput. Syst. Sci. 48(3), 464–497 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lecué, G., Mendelson, S.: Aggregation via empirical risk minimization. Probab. Theory Relat. Fields 145(3), 591–613 (2009)

    Article  MATH  Google Scholar 

  19. Lee, W.S., Bartlett, P.L., Williamson, R.C.: The importance of convexity in learning with squared loss. IEEE Trans. Inf. Theory 44(5), 1974–1980 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Littlestone, N.: Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm. Mach. Learn. 2(4), 285–318 (1988)

    Google Scholar 

  21. Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Inf. Comput. 108(2), 212–261 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mendelson, S., Vershynin, R.: Entropy and the combinatorial dimension. Invent. Math. 152(1), 37–55 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pisier, G.: Martingales with values in uniformly convex spaces. Isr. J. Math. 20, 326–350 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pollard, D.: Convergence of Stochastic Processes. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  25. Rakhlin, A., Sridharan, K.: Online nonparametric regression. In: The 27th Annual Conference on Learning Theory (2014)

    Google Scholar 

  26. Rakhlin, A., Sridharan, K., Tewari, A.: Online learning: random averages, combinatorial parameters, and learnability. Adv. Neural Inf. Process. Syst. 23, 1984–1992 (2010)

    Google Scholar 

  27. Rakhlin, A., Sridharan, K., Tewari, A.: Online learning: stochastic, constrained, and smoothed adversaries. In: Advances in Neural Information Processing Systems (2011)

    Google Scholar 

  28. Rakhlin, A., Sridharan, K., Tewari, A.: Sequential complexities and uniform martingale laws of large numbers. Probab. Theory Relat. Fields (2014)

    Google Scholar 

  29. Rakhlin, A., Sridharan, K., Tsybakov, A.: Empirical entropy, minimax regret and minimax risk. Bernoulli J. (2015). Forthcoming

    Google Scholar 

  30. Rakhlin, A., Shamir, O., Sridharan, K.: Relax and randomize: from value to algorithms. Adv. Neural Inf. Process. Syst. 25, 2150–2158 (2012)

    Google Scholar 

  31. Rudelson, M., Vershynin, R.: Combinatorics of random processes and sections of convex bodies. Ann. Math. 164(2), 603–648 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sridharan, K., Tewari, A.: Convex games in Banach spaces. In: Proceedings of the 23nd Annual Conference on Learning Theory (2010)

    Google Scholar 

  33. Steele, J.M.: Empirical discrepancies and subadditive processes. Ann. Probab. 6(1), 118–127 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  34. Van de Geer, S.A.: Empirical Processes in M-Estimation. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  35. Van Der Vaart, A.W., Wellner, J.A.: Weak Convergence and Empirical Processes: With Applications to Statistics. Springer, New York (1996)

    Book  MATH  Google Scholar 

  36. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  37. Vapnik, V.N., Chervonenkis, A.Y.: Algorithms with complete memory and recurrent algorithms in pattern recognition learning. Avtomatika i Telemekhanika 4, 95–106 (1968)

    Google Scholar 

  38. Vapnik, V.N., Chervonenkis, A.Y.: Uniform convergence of frequencies of occurrence of events to their probabilities. Dokl. Akad. Nauk SSSR 181, 915–918 (1968)

    Google Scholar 

  39. Vapnik, V.N., Chervonenkis, A.Y.: On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16(2), 264–280 (1971) (This volume, Chap. 3)

    Google Scholar 

  40. Vapnik, V.N., Chervonenkis, A.Y.: The necessary and sufficient conditions for the uniform convergence of averages to their expected values. Theory Probab. Appl. 26(3), 543–564 (1981)

    MathSciNet  MATH  Google Scholar 

  41. Vovk, V.: Aggregating strategies. In: Proceedings of the Third Annual Workshop on Computational Learning Theory, pp. 371–386. Morgan Kaufmann, San Mateo (1990)

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of NSF under grants CAREER DMS-0954737 and CCF-1116928.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Rakhlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rakhlin, A., Sridharan, K. (2015). On Martingale Extensions of Vapnik–Chervonenkis Theory with Applications to Online Learning. In: Vovk, V., Papadopoulos, H., Gammerman, A. (eds) Measures of Complexity. Springer, Cham. https://doi.org/10.1007/978-3-319-21852-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21852-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21851-9

  • Online ISBN: 978-3-319-21852-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics