On the Approximability of Orthogonal Order Preserving Layout Adjustment

  • Sayan Bandyapadhyay
  • Santanu Bhowmick
  • Kasturi Varadarajan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9214)


Given an initial placement of a set of rectangles in the plane, we consider the problem of finding a disjoint placement of the rectangles that minimizes the area of the bounding box and preserves the orthogonal order i.e. maintains the sorted ordering of the rectangle centers along both x-axis and y-axis with respect to the initial placement. This problem is known as Layout Adjustment for Disjoint Rectangles (LADR). It was known that LADR is \(\mathbb {NP}\)-hard, but only heuristics were known for it. We show that a certain decision version of LADR is \(\mathbb {APX}\)-hard, and give a constant factor approximation for LADR.


Geographic Information System Polynomial Time Algorithm Constant Factor Approximation Strip Packing Strip Packing Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamaszek, A., Wiese, A.: A quasi-ptas for the two-dimensional geometric knapsack problem. In: SODA, pp. 1491–1505 (2015)Google Scholar
  2. 2.
    Agarwal, P.K., van Kreveld, M.J., Suri, S.: Label placement by maximum independent set in rectangles. Comput. Geom. 11(3–4), 209–218 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brandes, U., Pampel, B.: Orthogonal-ordering constraints are tough. J. Graph Algorithms Appl. 17(1), 1–10 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bridgeman, S.S., Tamassia, R.: Difference metrics for interactive orthogonal graph drawing algorithms. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 57–71. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  5. 5.
    Bridgeman, S., Tamassia, R.: A user study in similarity measures for graph drawing. J. Graph Algorithms Appl. 6(3), 225–254 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Eades, P., Lai, W., Misue, K., Sugiyama, K.: Preserving the mental map of a diagram. International Institute for Advanced Study of Social Information Science, Fujitsu Limited (1991)Google Scholar
  7. 7.
    Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gaur, D.R., Ibaraki, T., Krishnamurti, R.: Constant ratio approximation algorithms for the rectangle stabbing problem and the rectilinear partitioning problem. J. Algorithms 43(1), 138–152 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Harren, R., Jansen, K., Prädel, L., van Stee, R.: A (5/3 + \(\varepsilon \))-approximation for strip packing. Comput. Geom. 47(2), 248–267 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Harren, R., van Stee, R.: Improved absolute approximation ratios for two-dimensional packing problems. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) Approximation, Randomization, and Combinatorial Optimization. LNCS, vol. 5687, pp. 177–189. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  11. 11.
    Hassin, R., Megiddo, N.: Approximation algorithms for hitting objects with straight lines. Discrete Appl. Math. 30(1), 29–42 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hayashi, K., Inoue, M., Masuzawa, T., Fujiwara, H.: A layout adjustment problem for disjoint rectangles preserving orthogonal order. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 183–197. Springer, Heidelberg (1999) CrossRefGoogle Scholar
  13. 13.
    Herman, I., Melançon, G., Marshall, M.S.: Graph visualization and navigation in information visualization: A survey. IEEE Transactions on Visualization and Computer Graphics 6(1), 24–43 (2000)CrossRefGoogle Scholar
  14. 14.
    Huang, X., Lai, W., Sajeev, A., Gao, J.: A new algorithm for removing node overlapping in graph visualization. Information Sciences 177(14), 2821–2844 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    van Kreveld, M.J., Strijk, T., Wolff, A.: Point labeling with sliding labels. Comput. Geom. 13(1), 21–47 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Li, W., Eades, P., Nikolov, N.S.: Using spring algorithms to remove node overlapping. APVIS. CRPIT 45, 131–140 (2005)Google Scholar
  17. 17.
    Lodi, A., Martello, S., Monaci, M.: Two-dimensional packing problems: A survey. European Journal of Operational Research 141(2), 241–252 (2002)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map. Journal of visual languages and computing 6(2), 183–210 (1995)CrossRefGoogle Scholar
  19. 19.
    Schiermeyer, I.: Reverse-fit: A 2-optimal algorithm for packing rectangles. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 290–299. Springer, Heidelberg (1994) CrossRefGoogle Scholar
  20. 20.
    Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM J. Comput. 26(2), 401–409 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Storey, M.A.D., Müller, H.A.: Graph layout adjustment strategies. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 487–499. Springer, Heidelberg (1996) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Sayan Bandyapadhyay
    • 1
  • Santanu Bhowmick
    • 1
  • Kasturi Varadarajan
    • 1
  1. 1.Department of Computer ScienceUniversity of IowaIowa CityUSA

Personalised recommendations