Online Bin Packing with Advice of Small Size

  • Spyros Angelopoulos
  • Christoph Dürr
  • Shahin Kamali
  • Marc Renault
  • Adi Rosén
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9214)


In this paper, we study the advice complexity of the online bin packing problem. In this well-studied setting, the online algorithm is supplemented with some additional information concerning the input. We improve upon both known upper and lower bounds of online algorithms for this problem. On the positive side, we first provide a relatively simple algorithm that achieves a competitive ratio arbitrarily close to 1.5, using constant-size advice. Our result implies that 16 bits of advice suffice to obtain a competitive ratio better than any online algorithm without advice, thus improving the previously known bound of \(O(\log (n))\) bits required to attain this performance. In addition, we introduce a more complex algorithm that still requires only constant-size advice, and which is below 1.5-competitive, namely has competitive ratio arbitrarily close to 1.47012. This is the currently best performance of any online bin packing algorithm with sublinear advice. On the negative side, we extend a construction due to Boyar et al. [10] so as to show that no online algorithm with sub-linear advice can be 7/6-competitive, which improves upon the known lower bound of 9/8.


Competitive Ratio Online Algorithm Critical Item Large Item Small Item 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamaszek, A., Renault, M.P., Rosén, A., van Stee, R.: Reordering buffer management with advice. In: Kaklamanis, C., Pruhs, K. (eds.) WAOA 2013. LNCS, vol. 8447, pp. 132–143. Springer, Heidelberg (2014) Google Scholar
  2. 2.
    Ásgeirsson, E.I., Ayesta, U., Coffman, E.G., Etra, J., Momcilovic, P., Phillips, D.J., Vokhshoori, V., Wang, Z., Wolfe, J.: Closed on-line bin packing. Acta Cybernetica 15(3), 361–367 (2002)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Balogh, J., Békési, J., Galambos, G.: New lower bounds for certain classes of bin packing algorithms. Theoretical Computer Science 440–441, 1–13 (2012)CrossRefGoogle Scholar
  4. 4.
    Böckenhauer, H., Hromkovic, J., Komm, D., Krug, S., Smula, J., Sprock, A.: The string guessing problem as a method to prove lower bounds on the advice complexity. Theoretical Computer Science 554, 95–108 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Böckenhauer, H., Komm, D., Královic, R., Rossmanith, P.: The online knapsack problem: Advice and randomization. Theoretical Computer Science 527, 61–72 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Böckenhauer, H.J., Komm, D., Královič, R., Královič, R.: On the advice complexity of the \(k\)-server problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the advice complexity of online problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  8. 8.
    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press (1998)Google Scholar
  9. 9.
    Boyar, J., Kamali, S., Larsen, K.S., López-Ortiz, A.: On the list update problem with advice. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 210–221. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  10. 10.
    Boyar, J., Kamali, S., Larsen, K.S., López-Ortiz, A.: Online bin packing with advice. In: Proc. 31st Symp. on Theoretical Aspects of Computer Science (STACS), pp. 174–186 (2014)Google Scholar
  11. 11.
    Dobrev, S., Královič, R., Pardubská, D.: Measuring the problem-relevant information in input. RAIRO - Theoretical Informatics and Applications 43(3), 585–613 (2009)CrossRefzbMATHGoogle Scholar
  12. 12.
    Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice. Theoretical Computer Science 412(24), 2642–2656 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Epstein, L., Levin, A.: On bin packing with conflicts. SIAM J. Optimization 19(3), 1270–1298 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Galambos, G., Woeginger, G.J.: Repacking helps in bounded space online bin packing. Computing 49, 329–338 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gambosi, G., Postiglione, A., Talamo, M.: Algorithms for the relaxed online bin-packing model. SIAM J. Computing 30(5), 1532–1551 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Grove, E.F.: Online bin packing with lookahead. In: Proc. 6th Symp. on Discrete Algorithms (SODA), pp. 430–436 (1995)Google Scholar
  17. 17.
    Johnson, D.S., Demers, A.J., Ullman, J.D., Garey, M.R., Graham, R.L.: Worst-case performance bounds for simple one-dimensional packing algorithms. SIAM J. Computing 3, 256–278 (1974)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Komm, D., Královič, R.: Advice complexity and barely random algorithms. RAIRO - Theoretical Informatics and Applications 45(2), 249–267 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Renault, M.P., Rosén, A.: On online algorithms with advice for the k-server problem. Theory of Computing Systems 56(1), 3–21 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Renault, M.P., Rosén, A., van Stee, R.: Online algorithms with advice for bin packing and scheduling problems. CoRR abs/1311.7589 (2013)Google Scholar
  21. 21.
    Seiden, S.S.: On the online bin packing problem. Journal of the ACM 49, 640–671 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Spyros Angelopoulos
    • 1
    • 2
  • Christoph Dürr
    • 1
    • 2
  • Shahin Kamali
    • 3
  • Marc Renault
    • 1
  • Adi Rosén
    • 4
  1. 1.Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6ParisFrance
  2. 2.CNRS, UMR 7606, LIP6ParisFrance
  3. 3.University of WaterlooWaterlooCanada
  4. 4.CNRS and Université Paris DiderotParisFrance

Personalised recommendations