Contact Representations of Graphs in 3D

  • Jawaherul Alam
  • William Evans
  • Stephen Kobourov
  • Sergey Pupyrev
  • Jackson Toeniskoetter
  • Torsten Ueckerdt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9214)

Abstract

We study contact representations of non-planar graphs in which vertices are represented by axis-aligned polyhedra in 3D and edges are realized by non-zero area common boundaries between corresponding polyhedra. We present a liner-time algorithm constructing a representation of a 3-connected planar graph, its dual, and the vertex-face incidence graph with 3D boxes. We then investigate contact representations of 1-planar graphs. We first prove that optimal 1-planar graphs without separating 4-cycles admit a contact representation with 3D boxes. However, since not every optimal 1-planar graph can be represented in this way, we also consider contact representations with the next simplest axis-aligned 3D object, L-shaped polyhedra. We provide a quadratic-time algorithm for representing optimal 1-planar graphs with L-shapes.

Keywords

Dual Graph Outer Face Primal Graph Contact Representation Schnyder Wood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alam, M.J., Evans, W.S., Kobourov, S.G., Pupyrev, S., Toeniskoetter, J., Ueckerdt, T.: Contact representations of graphs in 3D. CoRR abs/1501.00304 (2015)Google Scholar
  2. 2.
    Andreev, E.: On convex polyhedra in Lobachevskii spaces. Mat. Sb. 123(3), 445–478 (1970)Google Scholar
  3. 3.
    Badent, M., Brandes, U., Cornelsen, S.: More canonical ordering. Journal of Graph Algorithms and Applications 15(1), 97–126 (2011)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bernardi, O., Fusy, E.: Schnyder decompositions for regular plane graphs and application to drawing. Algorithmica 62(3–4), 1159–1197 (2012)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bezdek, A.: On the number of mutually touching cylinders. Combinatorial and Computational Geometry 52, 121–127 (2005)MathSciNetGoogle Scholar
  6. 6.
    Bonichon, N., Felsner, S., Mosbah, M.: Convex drawings of 3-connected plane graphs. Algorithmica 47(4), 399–420 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bremner, D., et al.: On representing graphs by touching cuboids. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 187–198. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  8. 8.
    Brinkmann, G., Greenberg, S., Greenhill, C., McKay, B., Thomas, R., Wollan, P.: Generation of simple quadrangulations of the sphere. Discrete Math. 305(1–3), 33–54 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Buchsbaum, A.L., Gansner, E.R., Procopiuc, C.M., Venkatasubramanian, S.: Rectangular layouts and contact graphs. ACM Transactions on Algorithms 4(1) (2008)Google Scholar
  10. 10.
    Czyzowicz, J., Kranakis, E., Urrutia, J.: A simple proof of the representation of bipartite planar graphs as the contact graphs of orthogonal straight line segments. Information Processing Letters 66(3), 125–126 (1998)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Fabrici, I., Madaras, T.: The structure of 1-planar graphs. Discrete Mathematics 307(7–8), 854–865 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Felsner, S., Francis, M.C.: Contact representations of planar graphs with cubes. In: Hurtado, F., van Kreveld, M.J. (eds.) SOCG, pp. 315–320. ACM (2011)Google Scholar
  13. 13.
    Felsner, S., Zickfeld, F.: Schnyder woods and orthogonal surfaces. Discrete & Computational Geometry 40(1), 103–126 (2008)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    de Fraysseix, H., de Mendez, P.O.: Representations by contact and intersection of segments. Algorithmica 47(4), 453–463 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gonçalves, D., Lévêque, B., Pinlou, A.: Triangle contact representations and duality. Discrete & Computational Geometry 48(1), 239–254 (2012)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hliněný, P., Kratochvíl, J.: Representing graphs by disks and balls (a survey of recognition-complexity results). Discrete Mathematics 229(1–3), 101–124 (2001)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Kobourov, S.G., Ueckerdt, T., Verbeek, K.: Combinatorial and geometric properties of planar Laman graphs. In: Khanna, S. (ed.) SODA, pp. 1668–1678. SIAM (2013)Google Scholar
  18. 18.
    Koebe, P.: Kontaktprobleme der konformen Abbildung. Berichte über die Verhandlungen der Sächsischen Akad. der Wissen. zu Leipzig. Math.-Phys. Klasse 88, 141–164 (1936)Google Scholar
  19. 19.
    Mohar, B.: Circle packings of maps in polynomial time. European Journal of Combinatorics 18(7), 785–805 (1997)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg 29(1–2), 107–117 (1965)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Schumacher, H.: Zur struktur 1-planarer graphen. Math. Nachrichten 125, 291–300 (1986)MathSciNetMATHGoogle Scholar
  22. 22.
    Suzuki, Y.: Re-embeddings of maximum 1-planar graphs. SIAM Journal on Discrete Mathematics 24(4), 1527–1540 (2010)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Thomassen, C.: Interval representations of planar graphs. Journal of Combinatorial Theory Series B 40(1), 9–20 (1988)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jawaherul Alam
    • 1
  • William Evans
    • 2
  • Stephen Kobourov
    • 1
  • Sergey Pupyrev
    • 1
    • 3
  • Jackson Toeniskoetter
    • 1
  • Torsten Ueckerdt
    • 4
  1. 1.Department of Computer ScienceUniversity of ArizonaTucsonUSA
  2. 2.Department of Computer ScienceUniversity of British ColumbiaVancouverCanada
  3. 3.Institute of Mathematics and Computer ScienceUral Federal UniversityYekaterinburgRussia
  4. 4.Department of MathematicsKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations