Advertisement

Select with Groups of 3 or 4

  • Ke Chen
  • Adrian Dumitrescu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9214)

Abstract

We revisit the selection problem, namely that of computing the ith order statistic of n given elements, in particular the classical deterministic algorithm by grouping and partition due to Blum, Floyd, Pratt, Rivest, and Tarjan (1973). While the original algorithm uses groups of odd size at least 5 and runs in linear time, it has been perpetuated in the literature that using groups of 3 or 4 will force the worst-case running time to become superlinear, namely \(\Omega (n \log {n})\). We first point out that the arguments existent in the literature justifying the superlinear worst-case running time fall short of proving this claim. We further prove that it is possible to use group size 3 or 4 while maintaining the worst case linear running time. To this end we introduce two simple variants of the classical algorithm, the repeated step algorithm and the shifting target algorithm, both running in linear time.

Keywords

Median selection ith order statistic Comparison algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aho, A.V., Hopcroft, J.E., Ullman, J.D.: Data Structures and Algorithms. Addison-Wesley, Reading (1983)MATHGoogle Scholar
  2. 2.
    Ajtai, M., Komlós, J., Steiger, W.L., Szemerédi, E.: Optimal parallel selection has complexity \(O(\log \log {n})\). Journal of Computer and System Sciences 38(1), 125–133 (1989)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baase, S.: Computer Algorithms: Introduction to Design and Analysis, 2nd edn. Addison-Wesley, Reading (1988)Google Scholar
  4. 4.
    Battiato, S., Cantone, D., Catalano, D., Cincotti, G., Hofri, M.: An efficient algorithm for the approximate median selection problem. In: Bongiovanni, G., Petreschi, R., Gambosi, G. (eds.) CIAC 2000. LNCS, vol. 1767, p. 226. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  5. 5.
    Bent, S.W., John, J.W.: Finding the median requires \(2n\) comparisons. In: Proceedings of the 17th Annual ACM Symposium on Theory of Computing (STOC 1985), pp. 213–216. ACM (1985)Google Scholar
  6. 6.
    Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan, R.E.: Time bounds for selection. Journal of Computer and System Sciences 7(4), 448–461 (1973)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)Google Scholar
  8. 8.
    Cormen, T.H., Lee, C., Lin, E.: Instructor’s Manual, to accompany Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)Google Scholar
  9. 9.
    Cunto, W., Munro, J.I.: Average case selection. Journal of ACM 36(2), 270–279 (1989)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dasgupta, S., Papadimitriou, C., Vazirani, U.: Algorithms. Mc Graw Hill, New York (2008)MATHGoogle Scholar
  11. 11.
    Dor, D., Håstad, J., Ulfberg, S., Zwick, U.: On lower bounds for selecting the median. SIAM Journal on Discrete Mathematics 14(3), 299–311 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Dor, D., Zwick, U.: Finding the \(\alpha n\)th largest element. Combinatorica 16(1), 41–58 (1996)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Dor, D., Zwick, U.: Selecting the median. SIAM Journal on Computing 28(5), 1722–1758 (1999)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Floyd, R.W., Rivest, R.L.: Expected time bounds for selection. Communications of ACM 18(3), 165–172 (1975)CrossRefMATHGoogle Scholar
  15. 15.
    Fussenegger, F., Gabow, H.N.: A counting approach to lower bounds for selection problems. Journal of ACM 26(2), 227–238 (1979)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hadian, A., Sobel, M.: Selecting the \(t\)-th largest using binary errorless comparisons. Combinatorial Theory and Its Applications 4, 585–599 (1969)Google Scholar
  17. 17.
    Hoare, C.A.R.: Algorithm 63 (PARTITION) and algorithm 65 (FIND). Communications of the ACM 4(7), 321–322 (1961)CrossRefGoogle Scholar
  18. 18.
    Hyafil, L.: Bounds for selection. SIAM Journal on Computing 5(1), 109–114 (1976)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    John, J.W.: A new lower bound for the set-partitioning problem. SIAM Journal on Computing 17(4), 640–647 (1988)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kirkpatrick, D.G.: A unified lower bound for selection and set partitioning problems. Journal of ACM 28(1), 150–165 (1981)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Kirkpatrick, D.: Closing a long-standing complexity gap for selection: \(V_{3}\)(42) = 50. In: Brodnik, A., López-Ortiz, A., Raman, V., Viola, A. (eds.) Ianfest-66. LNCS, vol. 8066, pp. 61–76. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  22. 22.
    Kleinberg, J., Tardos, É.: Algorithm Design. Pearson & Addison-Wesley, Boston (2006)Google Scholar
  23. 23.
    Knuth, D.E.: The Art of Computer Programming. Sorting and Searching, vol. 3, 2nd edn. Addison-Wesley, Reading (1998) Google Scholar
  24. 24.
    Megiddo, N.: Partitioning with two lines in the plane. Journal of Algorithms 6(3), 430–433 (1985)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press (2005)Google Scholar
  26. 26.
    Paterson, M.: Progress in selection. In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 368–379. Springer, Heidelberg (1996) CrossRefGoogle Scholar
  27. 27.
    Schönhage, A., Paterson, M., Pippenger, N.: Finding the median. Journal of Computer and System Sciences 13(2), 184–199 (1976)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Yao, A., Yao, F.: On the average-case complexity of selecting the \(k\)th best. SIAM Journal on Computing 11(3), 428–447 (1982)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Yap, C.K.: New upper bounds for selection. Communications of the ACM 19(9), 501–508 (1976)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Zwick, U.: Personal communication, September 2014Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations