Advertisement

Bioengineered Human Heart and Skeletal Muscles on Chips: Methods and Applications

  • Ki-Hwan Nam
  • Mikael Perla
  • Alec S. T. Smith
  • Deok-Ho Kim
Chapter
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 9)

Abstract

This chapter introduces innovative organ-on-chip platforms for chemical assay and toxicity testing that measures the physiological properties of live, engineered muscular tissue samples. The advantages of using such engineered tissues for drug screening compared to more conventional cell-based assays are discussed. Specifically, this chapter will outline recent developments and applications of cardiac and skeletal muscle organ-on-chip systems. Recent advances in micro- and nanofabrication techniques, along with their biological applications with regard to organ-on-chips, are also reviewed in this chapter.

Keywords

Organ-on-chip Heart-on-chip Muscle-on-chip Micro/nanofabrication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Huh, D., Torisawa, Y.S., Hamilton, G.A., Kim, H.J., Ingber, D.E.: Microengineered physiological biomimicry: Organs-on-Chips. Lab on a Chip 12, 2156–2164 (2012)CrossRefGoogle Scholar
  2. 2.
    Esch, M.B., Smith, A.S., Prot, J.M., Oleaga, C., Hickman, J.J., Shuler, M.L.: How multi-organ microdevices can help foster drug development. Advanced Drug Delivery Reviews 69–70, 158–169 (2014)CrossRefGoogle Scholar
  3. 3.
    Sung, J.H., Esch, M.B., Prot, J.M., Long, C.J., Smith, A., et al.: Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab on a Chip 13, 1201–1212 (2013)CrossRefGoogle Scholar
  4. 4.
    Abaci, H.E., Shuler, M.L.: Human-on-a-chip design strategies and principles for physiologically based pharmacokinetics/ pharmacodynamics modeling. Integrative Biology 7, 383–391 (2015)CrossRefGoogle Scholar
  5. 5.
    Erson, E.Z., Cavusoglu, M.C.: A software framework for multiscale and multilevel physiological model integration and simulation. IEEE Engineering in Medicine and Biology Society. Annual Conference 2008, 5449–5453 (2008)Google Scholar
  6. 6.
    Agarwal, A., Goss, J.A., Cho, A., McCain, M.L., Parker, K.K.: Microfluidic heart on a chip for higher throughput pharmacological studies. Lab on a Chip 13, 3599–3608 (2013)CrossRefGoogle Scholar
  7. 7.
    Boudou, T., Legant, W.R., Mu, A.B., Borochin, M.A., Thavandiran, N., et al.: A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. Tissue Eng. Pt. A 18, 910–919 (2012)CrossRefGoogle Scholar
  8. 8.
    Hansen, A., Eder, A., Bonstrup, M., Flato, M., Mewe, M., et al.: Development of a drug screening platform based on engineered heart tissue. Circulation Research 107, 35–U70 (2010)CrossRefGoogle Scholar
  9. 9.
    Kim, D.H., Kshitiz, Smith R.R., Kim, P., Ahn, E.H., et al.: Nanopatterned cardiac cell patches promote stem cell niche formation and myocardial regeneration. Integrative Biology 4, 1019–1033 (2012)CrossRefGoogle Scholar
  10. 10.
    Mathur, A., Loskill, P., Shao, K.F., Huebsch, N., Hong, S., et al.: Human iPSC-based cardiac microphysiological system for drug screening applications. Scientific Reports 5, 8883 (2015)CrossRefGoogle Scholar
  11. 11.
    Wang, G., McCain, M.L., Yang, L.H., He, A.B., Pasqualini, F.S., et al.: Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nature Medicine 20, 616–623 (2014)CrossRefGoogle Scholar
  12. 12.
    Juhas, M., Engelmayr Jr, G.C., Fontanella, A.N., Palmer, G.M., Bursac, N.: Biomimetic engineered muscle with capacity for vascular integration and functional maturation in vivo. Proceedings of the National Academy of Sciences of the United States of America 111, 5508–5513 (2014)CrossRefGoogle Scholar
  13. 13.
    Shansky, J., DelTatto, M., Chromiak, J., Vandenburgh, H.: A simplified method for tissue engineering skeletal muscle organoids in vitro. In Vitro Cellular and Developmental Biology 33, 659–661 (1997)CrossRefGoogle Scholar
  14. 14.
    Vandenburgh, H.: High-content drug screening with engineered musculoskeletal tissues. Tissue Engineering Part B 16, 55–64 (2010)CrossRefGoogle Scholar
  15. 15.
    Vandenburgh, H., Shansky, J., Benesch-Lee, F., Barbata, V., Reid, J., et al.: Drug-screening platform based on the contractility of tissue-engineered muscle. Muscle Nerve 37, 438–447 (2008)CrossRefGoogle Scholar
  16. 16.
    Nam, K.-H., Smith, A.S.T., Lone, S., Kwon, S., Kim, D.-H.: Biomimetic 3D tissue models for advanced high-throughput drug screening. Journal of Laboratory Automation 20, 201–215 (2015)CrossRefGoogle Scholar
  17. 17.
    Legant, W.R., Pathak, A., Yang, M.T., Deshpande, V.S., McMeeking, R.M., Chen, C.S.: Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues. Proceedings of the National Academy of Sciences of the United States of America 106, 10097–10102 (2009)CrossRefGoogle Scholar
  18. 18.
    Bell, E., Ivarsson, B., Merrill, C.: Production of a tissue-like structure by contraction of collagen lattices by human-fibroblasts of different proliferative potential in vitro. Proceedings of the National Academy of Sciences of the United States of America 76, 1274–1278 (1979)CrossRefGoogle Scholar
  19. 19.
    Ye, X.F., Lu, L., Kolewe, M.E., Park, H., Larson, B.L., et al.: A biodegradable microvessel scaffold as a framework to enable vascular support of engineered tissues. Biomaterials 34, 10007–10015 (2013)CrossRefGoogle Scholar
  20. 20.
    Smith, A.S., Long, C.J., Pirozzi, K., Hickman, J.J.: A functional system for high-content screening of neuromuscular junctions. Technology 1, 37–48 (2013)CrossRefGoogle Scholar
  21. 21.
    Umbach, J.A., Adams, K.L., Gundersen, C.B., Novitch, B.G.: Functional neuromuscular junctions formed by embryonic stem cell-derived motor neurons. PLoS One 7, e36049 (2012)CrossRefGoogle Scholar
  22. 22.
    Larkin, L.M., Calve, S., Kostrominova, T.Y., Arruda, E.M.: Structure and functional evaluation of tendon-skeletal muscle constructs engineered in vitro. Tissue Engineering 12, 3149–3158 (2006)CrossRefGoogle Scholar
  23. 23.
    Jiao, A., Trosper, N.E., Yang, H.S., Kim, J., Tsui, J.H., et al.: Thermoresponsive nanofabricated substratum for the engineering of three-dimensional tissues with layer-by-layer architectural control. ACS Nano 8, 4430–4439 (2014)CrossRefGoogle Scholar
  24. 24.
    Kim, D.H., Lee, H., Lee, Y.K., Nam, J.M., Levchenko, A.: Biomimetic nanopatterns as enabling tools for analysis and control of live cells. Advanced Materials 22, 4551–4566 (2010)CrossRefGoogle Scholar
  25. 25.
    Kim, D.H., Lipke, E.A., Kim, P., Cheong, R., Thompson, S., et al.: Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proceedings of the National Academy of Sciences of the United States of America 107, 565–570 (2010)CrossRefGoogle Scholar
  26. 26.
    Kim, D.H., Provenzano, P.P., Smith, C.L., Levchenko, A.: Matrix nanotopography as a regulator of cell function. Journal of Cell Biology 197, 351–360 (2012)CrossRefGoogle Scholar
  27. 27.
    Kim, H.N., Kang, D.H., Kim, M.S., Jiao, A., Kim, D.H., Suh, K.Y.: Patterning methods for polymers in cell and tissue engineering. Annals of Biomedical Engineering 40, 1339–1355 (2012)CrossRefGoogle Scholar
  28. 28.
    Kim, P., Yuan, A., Nam, K.H., Jiao, A., Kim, D.H.: Fabrication of poly(ethylene glycol): gelatin methacrylate composite nanostructures with tunable stiffness and degradation for vascular tissue engineering. Biofabrication 6, 024112 (2014)CrossRefGoogle Scholar
  29. 29.
    Ahn, E.H., Kim, Y., Kshitiz, An S.S., Afzal, J., et al.: Spatial control of adult stem cell fate using nanotopographic cues. Biomaterials 35, 2401–2410 (2014)CrossRefGoogle Scholar
  30. 30.
    Chaterji, S., Kim, P., Choe, S.H., Tsui, J.H., Lam, C.H., et al.: Synergistic Effects of Matrix Nanotopography and Stiffness on Vascular Smooth Muscle Cell Function. Tissue Engineering Part A 20, 2115–2126 (2014)CrossRefGoogle Scholar
  31. 31.
    Kim, E.S., Ahn, E.H., Dvir, T., Kim, D.H.: Emerging nanotechnology approaches in tissue engineering and regenerative medicine. International Journal of Nanomedicine 9, 1–5 (2014)CrossRefGoogle Scholar
  32. 32.
    Kim, H.N., Jiao, A., Hwang, N.S., Kim, M.S., Kang, D.H., et al.: Nanotopography-guided tissue engineering and regenerative medicine. Advanced Drug Delivery Review 65, 536–558 (2013)CrossRefGoogle Scholar
  33. 33.
    Kim, J., Kim, H.N., Lim, K.T., Kim, Y., Seonwoo, H., et al.: Designing nanotopographical density of extracellular matrix for controlled morphology and function of human mesenchymal stem cells. Scientific Reports 3, 3552 (2013)Google Scholar
  34. 34.
    Kshitiz, Park J., Kim, P., Helen, W., Engler, A.J., et al.: Control of stem cell fate and function by engineering physical microenvironments. Integrative Biology 4, 1008–1018 (2012)CrossRefGoogle Scholar
  35. 35.
    Macadangdang, J., Lee, H.J., Carson, D., Jiao, A., Fugate, J. et al.: Capillary force lithography for cardiac tissue engineering. Journal of Visualized Experiments: JoVE 88 (2014) doi: 10.3791/50039
  36. 36.
    Nemeth, C.L., Janebodin, K., Yuan, A.E., Dennis, J.E., Reyes, M., Kim, D.H.: Enhanced chondrogenic differentiation of dental pulp stem cells using nanopatterned PEG-GelMA-HA hydrogels. Tissue Engineering Part A 20, 2817–2829 (2014)CrossRefGoogle Scholar
  37. 37.
    Yang, H.S., Ieronimakis, N., Tsui, J.H., Kim, H.N., Suh, K.Y., et al.: Nanopatterned muscle cell patches for enhanced myogenesis and dystrophin expression in a mouse model of muscular dystrophy. Biomaterials 35, 1478–1486 (2014)CrossRefGoogle Scholar
  38. 38.
    Cavero, I., Holzgrefe, H.: Comprehensive in vitro Proarrhythmia Assay, a novel in vitro/in silico paradigm to detect ventricular proarrhythmic liability: a visionary 21st century initiative. Expert Opinion on Drug Safety 13, 745–758 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ki-Hwan Nam
    • 2
  • Mikael Perla
    • 1
  • Alec S. T. Smith
    • 1
  • Deok-Ho Kim
    • 1
    • 3
    • 4
  1. 1.Department of BioengineeringUniversity of WashingtonSeattleUSA
  2. 2.Optical Instrumentation Development TeamThe Korea Basic Science InstituteDaejeonKorea
  3. 3.Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleUSA
  4. 4.Center for Cardiovascular BiologyUniversity of WashingtonSeattleUSA

Personalised recommendations